Font Size: a A A

Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

Posted on:2014-09-26Degree:Ph.DType:Dissertation
University:The Johns Hopkins UniversityCandidate:Chan, Tania RFull Text:PDF
GTID:1454390005488667Subject:Engineering
Abstract/Summary:
Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity.;We demonstrate QKCMP’s ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP’s ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide’s in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP’s efficacy as a matrix-bound angiogenic factor that directs endothelial cell proliferation and migration. These findings suggest that QKCMP can be used to enhance microvasculature formation during wound healing as well as to promote spatially controlled microvasculature for tissue engineering applications.
Keywords/Search Tags:Endothelial cell, Collagen, VEGF, Peptide, Formation, Tissue, Mimetic, QKCMP
Related items