Font Size: a A A

Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

Posted on:2014-11-03Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Chien, Karen BFull Text:PDF
GTID:1454390005988083Subject:Engineering
Abstract/Summary:
Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen.;In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated.;All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood glucose and insulin sensitivity levels. Furthermore, soy scaffolds implanted in the intraperitoneal cavity attached to adjacent liver tissue with no abnormalities. In vitro, soy scaffolds supported hMSC viability and transdifferentiation into hepatocyte-like cells. These results support the use of soy scaffolds for liver tissue engineering and for treating metabolic diseases. Based on achievable structural and mechanical properties, as well as systemic effects of ingested and degraded soy proteins, soy protein scaffolds may serve as new multifunctional biomaterials for tissue engineering and regenerative medicine.
Keywords/Search Tags:Soy, Tissue engineering, Biomaterials, Scaffolds, Regenerative, Using
Related items