Font Size: a A A

Electricity market pricing, risk hedging and modeling

Posted on:2007-02-09Degree:Ph.DType:Dissertation
University:University of Illinois at Urbana-ChampaignCandidate:Cheng, XuFull Text:PDF
GTID:1459390005981819Subject:Engineering
Abstract/Summary:
In this dissertation, we investigate the pricing, price risk hedging/arbitrage, and simplified system modeling for a centralized LMP-based electricity market. In an LMP-based market model, the full AC power flow model and the DC power flow model are most widely used to represent the transmission system. We investigate the differences of dispatching results, congestion pattern, and LMPs for the two power flow models.; An appropriate LMP decomposition scheme to quantify the marginal costs of the congestion and real power losses is critical for the implementation of financial risk hedging markets. However, the traditional LMP decomposition heavily depends on the slack bus selection. In this dissertation we propose a slack-independent scheme to break LMP down into energy, congestion, and marginal loss components by analyzing the actual marginal cost of each bus at the optimal solution point. The physical and economic meanings of the marginal effect at each bus provide accurate price information for both congestion and losses, and thus the slack-dependency of the traditional scheme is eliminated.; With electricity priced at the margin instead of the average value, the market operator typically collects more revenue from power sellers than that paid to power buyers. According to the LMP decomposition results, the revenue surplus is then divided into two parts: congestion charge surplus and marginal loss revenue surplus. We apply the LMP decomposition results to the financial tools, such as financial transmission right (FTR) and loss hedging right (LHR), which have been introduced to hedge against price risks associated to congestion and losses, to construct a full price risk hedging portfolio.; The two-settlement market structure and the introduction of financial tools inevitably create market manipulation opportunities. We investigate several possible market manipulation behaviors by virtual bidding and propose a market monitor approach to identify and quantify such behavior.; Finally, the complexity of the power market and size of the transmission grid make it difficult for market participants to efficiently analyze the long-term market behavior. We propose a simplified power system commercial model by simulating the PTDFs of critical transmission bottlenecks of the original system.
Keywords/Search Tags:Market, Model, Risk hedging, LMP, Electricity, Power, System, Price
Related items