Font Size: a A A

Discharge of buoyant fluid jets and particle-laden jets into stratified ambient fluid

Posted on:2003-03-29Degree:Ph.DType:Dissertation
University:The University of British Columbia (Canada)Candidate:Kim, Sunkyoung AnnieFull Text:PDF
GTID:1460390011982612Subject:Engineering
Abstract/Summary:
Extraction of petroleum from oil sands generates a vast quantity of fine tailings. A common form of tailings treatment involves discharging the tailings at an angle of minus a few degrees into a tailings pond.; This study investigates the dynamics of fluid jets and particle-laden jets discharged downward at an angle of 3° into stratified ambient fluid. This in turn allows identification of the discharge conditions that minimize the release of undesirable substances into the upper layer of the pond. A series of laboratory experiments were conducted for round buoyant fluid jets and particle-laden jets, the latter consisting of buoyant interstitial fluid and varied particle concentration.; Important parameters affecting the behavior of fluid jets in two-layer systems were found to be the buoyancy flux, the magnitude of the density step, and the discharge distance to the pycnocline. These were combined into a dimensionless parameter, Ψ, which was then used to determine three flow regimes: the weak impingement, strong impingement and penetration regimes. Buoyant jets impinged weakly on the pycnocline and proceeded horizontally when Ψ < 0.5, the upper layer being undisturbed by the discharge. However, for Ψ > 0.9, buoyant jets penetrated to the water surface after discharge and spread above the pycnocline. During penetration, the entrained fluid from the lower layer was transported and mixed throughout the upper layer. For the transition regime, 0.5 < Ψ < 0.9, buoyant jets caused significant mixing in the upper layer but no density change occurred at the surface.; The small discharge angle (−3°) was found to not significantly affect the behavior of buoyant jets relative to horizontal discharge. Backflows occurred along the pycnocline when the jet angle at the pycnocline was greater than 7° for the weak and strong impingement regimes. For the penetration regime Ψ > 0.9, some jet flow accumulated along the pycnocline and Backflows also formed at the surface of the upper layer. Coanda bottom attachment occurred, independently of the ambient fluid conditions, when the dimensionless parameter h/ℓM > 0.22.; The dimensionless maximum rise height and the top of the spreading layer were found to increase linearly with Ψ in the strong impingement regime but were constant in the weak impingement regime. Also, the spreading layer thickness increased with a dimensionless momentum term regardless of the presence of the density step.; The analysis of gross flow characteristics indicated that particles reduce the potential of buoyant interstitial fluid to rise or significantly penetrate into the upper layer. (Abstract shortened by UMI.)...
Keywords/Search Tags:Fluid, Buoyant, Jets, Upper layer, Discharge, Ambient, Tailings
Related items