Font Size: a A A

Vacuum assisted resin transfer molding (VARTM): Model development and verification

Posted on:2004-07-11Degree:Ph.DType:Dissertation
University:Virginia Polytechnic Institute and State UniversityCandidate:Song, XiaolanFull Text:PDF
GTID:1461390011465851Subject:Engineering
Abstract/Summary:PDF Full Text Request
In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.; Flow of resin through the preform is modeled as flow through porous media. Darcy's law combined with the continuity equation for an incompressible Newtonian fluid forms the basis of the flow model. During the infiltration process, it is well accepted that the total pressure is shared by the resin pressure and the pressure supported by the fiber network. With the progression of the resin, the net pressure applied to the preform decreases as a result of increasing local resin pressure. This leads to the springback of the preform, and is called the springback mechanism. On the other side, the lubrication effect of the resin causes the rearrangement of the fiber network and an increase in the preform compaction. This is called the wetting compaction mechanism. The thickness change of the preform is determined by the relative magnitude of the springback and wetting deformation mechanisms. In the compaction model, the transverse equilibrium equation is used to calculate the net compaction pressure applied to the preform, and the compaction test results are fitted to give the compressive constitutive law of the preform. The Finite Element/Control Volume (FE/CV) method is adopted to find the flow front location and the fluid pressure. The code features the ability of simultaneous integration of 1-D, 2-D and 3-D element types in a single simulation, and thus enables efficient modeling of the flow in complex mold geometries.; VARTM of two flat composite panels was conducted to verify the simulation model. The composite panels were fabricated using the SAERTEX multi-axial warp knit carbon fiber fabric and SI-ZG-5A epoxy resin. (Abstract shortened by UMI.)...
Keywords/Search Tags:Resin, Model, VARTM, Preform, Fiber
PDF Full Text Request
Related items