Font Size: a A A

Impact of ammonia and long chain fatty acids on thermophilic anaerobic digestion of swine wastes

Posted on:2011-12-18Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Creamer, Kurt SerenoFull Text:PDF
GTID:1461390011471383Subject:Environmental Health
Abstract/Summary:
Environmentally sound treatment of by-products in a value-adding process is an ongoing challenge in animal agriculture. Thermophilic anaerobic digestion of wastes originating from agricultural production and animal processing represents a potential waste treatment technology to address environmental concerns such as odor emissions and removal of pathogenic microorganisms, while at the same time producing renewable energy (biogas) as a by-product. However, thermophilic digestion is subject to inhibition by ammonia and long chain fatty acids (LCFA), both of which are prevalent in manure and animal processing wastewater. Several swine manure collection methods under development separate the urine from the feces, which creates the opportunity to operate a digester on feces only, greatly reducing the ammonia load to the digester. One objective of this study was to determine whether operation on feces only would yield significant performance improvements for a thermophilic anaerobic digester operating on swine waste. Effluent from a continuously stirred tank reactor (CSTR) was used as the inoculum for batch tests in which the substrate contained three different concentrations of urine (urine-free, as-excreted urine:feces ratio and double the as-excreted urine:feces ratio). Inocula were acclimated to these same urine:feces ratios to determine methane production. Results show that both urine-free and as-excreted substrates were not inhibitory to anaerobic inocula. Anaerobic microorganisms can be readily acclimated to substrate with double the as-excreted urine concentration, which contained TKN concentrations up to 7.20 g-N liter-1. The sludge collected from the dissolved air flotation (DAF) wastewater treatment process in swine processing facilities is an example of a high-lipid substrate containing potentially inhibitory levels of LCFA. A second objective of this study was to determine the fundamental performance parameters for thermophilic anaerobic digestion of DAF sludge. Testing in a semi-continuous stirred tank reactor and in batch reactors was conducted to determine substrate degradation rates and biogas yield. Stable operation could not be achieved using pure DAF sludge as a substrate, possibly due to inhibition by long chain fatty acids or to nutrient deficiencies. However, a 1:1 ratio (w/w, dry basis) of DAF sludge and swine manure (feces only), resulted in stable and productive digester operation. In the semi-continuous stirred reactor at 54.5°C, a hydraulic residence time of 10 days, and an organic loading rate of 4.68 gVS/day/L, the methane production rate was 2.19 L/L/day and the specific methane production rate was 0.47 L/gVS (fed). Maximum specific methanogenic activity (SMA) in batch testing was 0.15 mmolesCH4 hr-1 gVS-1 at a manure/DAF substrate concentration of 6.9 gVS liter-1. Higher substrate concentrations cause an initial lag in methane production, possibly due to long chain fatty acid or nitrogen inhibition.
Keywords/Search Tags:Long chain fatty, Thermophilic anaerobic digestion, Methane production, Swine, Substrate, DAF sludge, Ammonia
Related items