Font Size: a A A

Gold cementation on copper in thiosulfate solution: Kinetic, electrochemical, and morphological studies

Posted on:2004-01-28Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Lee, JaeheonFull Text:PDF
GTID:1461390011473099Subject:Engineering
Abstract/Summary:
Cyanidation has been used for more than a century for precious metal recovery and it is still in use today. Cyanide is a very toxic chemical and if not used appropriately will cause environmental problems. There is considerable attention devoted to the development of non-cyanide lixiviants for the process of gold and silver ores. Thiosulfate solution is one of the proposed alternatives to cyanide and gold cementation by copper has been suggested as a promising method for gold recovery from leaching solution.; Copper powder and rotating disc electrode were used for the kinetic study. The rate of gold cementation on copper disc is proportional to the initial gold concentration and disc rotating speed. The cementation reaction exhibited two distinct kinetic regions, an initial slow rate followed by an enhanced rate. The activation energy of the reaction was 5.9 kJ/mol at low copper concentration and the reaction is mass transport controlled. With 30 ppm initial copper concentration, there was noticeable decrease in the reaction rate in high temperature range. EDS, XRD, and XPS analysis revealed that the deposits are a Au-Cu alloy instead of pure gold. The alloy composition ranged from Au 3Cu to AuCu3 depending on the initial Cu/Au mole ratio in solution and applied potential.; Electrochemical studies were performed using rotating disc electrode and electrochemical quartz crystal nanobalance. Evans' diagrams were constructed under various experimental conditions. Corrosion current increased with increasing gold concentration, disc rotating speed, as well as thiosulfate concentration. These results confirmed those obtained in the kinetic study. Corrosion potential measurements indicated that passivation onset time was changed by gold concentration, copper concentration and disc rotating speed. Gold(I)-thiosulfate reduction was found to occur at approximately -250 mV vs. SHE using EQCN. Copper adions on the gold surface contributed to the underpotential deposition of copper and the underpotential deposition is the mechanism of alloy formation in cementation system. (Abstract shortened by UMI.)...
Keywords/Search Tags:Copper, Gold, Cementation, Kinetic, Solution, Disc rotating speed, Thiosulfate, Electrochemical
Related items