Metastable zirconia-yttria-alumina ceramics: Structure, processing and properties | | Posted on:2003-02-19 | Degree:Ph.D | Type:Dissertation | | University:Rutgers The State University of New Jersey - New Brunswick | Candidate:Zhou, Xinzhang | Full Text:PDF | | GTID:1461390011984817 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | Metastable phases of zirconia-yttria-alumina produced by atmospheric plasma spray and subsequent quenching were studied. Two kinds of quenching methods were used: water quenching and splat quenching. Quenching rates were estimated to be 104°C/s for water quenching and between 105–107°C/s for splat quenching. Five compositions of sprayed dried powders (pure alumina, TZ3Y20A, TZ3Y57A, TZ3Y80A and pure zirconia) were plasma sprayed and quenched. The phases and microstructures of the plasma sprayed powders and thin films were investigated by XRD and FESEM. It was found that at different compositions and quenching rates, different high temperature phases formed. These phases are metastable at room temperature and can be in the form of an extended solid solution phase, an intermediate phase, or an amorphous structure. The grain sizes of the metastable phases are below 50 nm, as determined by XRD peak broadening. At the eutectic composition, zirconia-rich fibers (50 nm in diameter) uniformly distributed in an alumina-rich matrix were observed. 2-D and 3-D metastable phase diagrams were constructed to explain the metastable phase formation.; Plasma spraying can be used to fabricate ceramic nanocomposites either by pressure-assisted sintering or spray forming of the metastable powders. Mechanical properties of TZ3Y20A specimens produced by plasma spray forming on steel substrates were studied. The dependence of the 4-point bend strength on plasma spray parameters was studied by a 26-2 statistical experimental design. It was found that the bend strength was sensitive to both standoff distance and scanning speed.; The results of study show much promise in applications of the metastable ceramics. Firstly, homogeneous nucleation and growth of stable phases during sintering and high creep rate at elevated temperatures will result in uniformly dense nanoceramic composites. Secondly, extended solid solutions of rare earth elements in glass will greatly enhance the optical properties. Thirdly, reduced phase transformation temperatures will also find their applications in ceramic processing. | | Keywords/Search Tags: | Metastable, Phase, Quenching, Plasma spray | PDF Full Text Request | Related items |
| |
|