Font Size: a A A

Reactive processing of biodegradable polyesters with dicumyl peroxide: A structural, rheological and property study

Posted on:2000-08-11Degree:Ph.DType:Dissertation
University:University of Massachusetts LowellCandidate:Canale, Philip LouisFull Text:PDF
GTID:1461390014461708Subject:Chemistry
Abstract/Summary:
Studies were undertaken to gain an understanding as to the mechanistic, rheological, thermal, and mechanical property effects that can be expected by reactively extruding biodegradable polyesters with dicumyl peroxide (DCP). The two main polymers used were poly(ϵ-caprolactone), (PCL), and proprietary copolyester, Eastar 14766. The reactive extrusions were carried out at 160°C at various DCP levels. The percent branching and type of branching, (tetraor tri-functional), were determined by SEC and by the comparison of branched distributions to statistical models. It was found that PCL quantitatively formed tetra-functional branches while the Eastar 14766 formed a combination of tri- and tetra-functional branch points. The Eastar 14766 was also shown to be more reactive than the PCL, with half as much DCP being required to achieve equivalent amounts of branching.; Thermal properties were studied by differential scanning calorimetry. In a multi-phase, upper critical solution temperature (UCST) system, such as Eastar 14766, the branches resulted in a compatiblization effect. This was shown as an increase in the glass transition temperature rising with the DCP level used in the reactive extrusion. The crystallization temperature decreased, and the heat of melting increased as the amount of branching/DCP level increased. The latter was attributed to the lower stereo regularity and/or the lower crystallization rate. The crystallization temperature increase is attributed to increased kinetics required, due to slower phase separation or increased viscosity. Branching/DCP level was shown to have a smaller effect on PCL, with the largest effect being an 11% relative decrease in heat of melting at the highest DCP level.; Rheology studies showed that both Eastar 14766 and PCL displayed typical branching behavior with increases in melt elasticity and zero shear viscosity. An estimate of the plateau modulus revealed the entanglement molecular weight for Eastar 14766 to be approximately three times lower than that of PCL. This explained why Eastar 14766 had a larger enhancement in zero shear viscosity and elasticity than PCL. It was also noted, qualitatively, that branching in both materials produced a broadened elastic modulus curve. This was attributed to the difference in the molecular weight/relaxation time relationship between linear and branched materials.; Tensile modulus and elongation studies showed PCL to be insensitive to branching. However, studies with Eastar 14766 showed tensile strength and elongation at break to be increased 30 and 10% respectively with branching. Tensile modulus on the other hand, remained relatively unchanged. These effects were attributed to phase changes due to increased compatibilization of the copolymer.; A brief study of a 50/50 blend of Eastar 14766 and Poly(lactic acid) with and without DCP showed that the blend with DCP had a similar tensile strength. However, the ultimate elongation increased by 150% and the modulus decreased of 26%. This shows the possible utility of reactive blending with peroxides in order to achieve a higher degree of compatibilization in a blend.
Keywords/Search Tags:Reactive, PCL, DCP, Eastar
Related items