Font Size: a A A

I. Synthesis of metal-organic chemical vapor deposition precursors and their use in oxide thin film depositions and II. Synthesis of monomeric tantalum(IV) amido complexes

Posted on:1997-12-19Degree:Ph.DType:Dissertation
University:University of HoustonCandidate:Suh, SeigiFull Text:PDF
GTID:1461390014483278Subject:Chemistry
Abstract/Summary:
I. Highly transparent ZnO thin films were prepared by atmospheric pressure CVD using a new zinc source, (EtZnNEt{dollar}sb2rbrack sb2{dollar}, at substrate temperatures of 250-350{dollar}spcirc{dollar}C. Atmospheric pressure CVD using Zn(N(SiMe{dollar}sb3)sb2)sb2{dollar} or Zn(N(t-Bu)(SiMe{dollar}sb3))sb2{dollar} in combination with oxygen gave zinc silicate films with various compositions at substrate temperatures of 400-550{dollar}spcirc{dollar}C.; The new group 13 oxide film precursors Ga(OR{dollar}sb{lcub}rm f{rcub})sb3{dollar}(HNMe{dollar}sb2{dollar}) (R{dollar}sb{lcub}rm f{rcub}{dollar} = CH(CF{dollar}sb3)sb2){dollar} and (H{dollar}sb2{dollar}NEt{dollar}sb2{dollar}) (In(OR{dollar}sb{lcub}rm f{rcub})sb4{dollar}(HNEt{dollar}sb2{dollar})) were synthesized from M(NR{dollar}sb2)sb3{dollar} compounds and alcohol. Low pressure chemical vapor deposition using the new precursors in combination with air gave gallium oxide films at 250-450{dollar}spcirc{dollar}C and fluorine-doped indium oxide at 200-450{dollar}spcirc{dollar}C. The indium oxide films were highly transparent in the visible region ({dollar}>{dollar}90%), and the lowest resistivity (1.6 {dollar}times{dollar} 10{dollar}sp{lcub}-3{rcub}{dollar} {dollar}Omega{dollar} cm) was measured for a film with composition In{dollar}sb2{dollar}0{dollar}sb{lcub}2.8{rcub}{dollar}F{dollar}sb{lcub}0.2{rcub}{dollar} deposited at 450{dollar}spcirc{dollar}C.; M(N(SiMe{dollar}sb3)sb2)sb2{dollar} reacted with R{dollar}sb{lcub}rm f{rcub}{dollar}OH and amine to give M(OR{dollar}sb{lcub}rm f{rcub})sb2{dollar}L (M = Ge, L = py or H{dollar}sb2{dollar}NPh; M = Sn, L = HNMe{dollar}sb2{dollar} or py) and (Pb({dollar}mu{dollar}-OR{dollar}sb{lcub}rm f{rcub}{dollar})(OR{dollar}sb{lcub}rm f{rcub})(p{dollar}-pyNMe{dollar}sb2)rbracksb2,{dollar} and M(NMe{dollar}sb2)sb2{dollar} reacted with R{dollar}sb{lcub}rm f{rcub}{dollar}OH to produce Sn(OR{dollar}sb{lcub}rm f{rcub})sb2{dollar}(HNMe{dollar}sb2){dollar} and {dollar}{lcub}{dollar}((Me{dollar}sb2{dollar}NH{dollar}sb2{dollar}) (Pb({dollar}mu{dollar}-OR{dollar}sb{lcub}rm f{rcub}{dollar})(OR{dollar}sb{lcub}rm f{rcub})sb2{dollar}) {dollar}{rcub}sb2{dollar}. Low pressure chemical vapor deposition using air and Sn(OR{dollar}sb{lcub}rm f{rcub})sb4{dollar}(HNMe{dollar}sb2)sb2{dollar}, synthesized from Sn(NMe{dollar}sb2)sb4,{dollar} and R{dollar}sb{lcub}rm f{rcub}{dollar}OH gave fluorine-doped tin oxide films that were highly transparent in the visible region ({dollar}>{dollar}85%) and conductive. The use of tin(II) Sn(OR{dollar}sb{lcub}rm f{rcub})sb2{dollar}(HNMe{dollar}sb2{dollar}) in combination with air or water vapor gave films with composition SnO{dollar}sb{lcub}0.9-1.1{rcub}{dollar}F{dollar}sb{lcub}0.1-0.4{rcub}{dollar}.; II. Ta(N(SiMe{dollar}sb3)sb2)sb2{dollar}Cl{dollar}sb3{dollar} reacted with Na/Hg to give Ta(N(SiMe{dollar}sb3)sb2)sb2{dollar}Cl{dollar}sb2{dollar}, and Ta(NEt{dollar}sb2)sb2{dollar}Cl{dollar}sb3{dollar} reacted with LiNPh{dollar}sb2{dollar} and Na/Hg to yield Ta(NPh{dollar}sb2)sb2{dollar}(NEt{dollar}sb2)sb2{dollar}. Ta(N(SiMe{dollar}sb3)sb2)sb2{dollar}Ph{dollar}sb2{dollar} was prepared by reacting Ta(N(SiMe{dollar}sb3)sb2)sb2{dollar}Cl{dollar}sb2{dollar} with LiPh. X-Ray crystallographic studies showed that Ta(N(SiMe{dollar}sb3)sb2)sb2{dollar}Cl{dollar}sb2{dollar}, Ta(N(SiMe{dollar}sb3)sb2)sb2{dollar}Ph{dollar}sb2{dollar} and Ta(NPh{dollar}sb2)sb2{dollar}(NEt{dollar}sb2)sb2{dollar} had distorted tetrahedral geometries.
Keywords/Search Tags:Sb2{dollar}, Chemical vapor deposition, Oxide, Film, Highly transparent, Precursors, Using, Pressure
Related items