Font Size: a A A

A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection

Posted on:2004-12-05Degree:Ph.DType:Dissertation
University:University of Maryland College ParkCandidate:Yang, MaoFull Text:PDF
GTID:1462390011474745Subject:Engineering
Abstract/Summary:
A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection is developed. The coupled rotor/fuselage/vibration absorbers (bifilar type) system incorporates consistent structural, aerodynamic and inertial couplings. The aeroelastic analysis is based on finite element methods in space and time. The coupled rotor, absorbers and fuselage equations are transformed into the modal space and solved in the fixed coordinate system. A coupled trim procedure is used to solve the responses of rotor, fuselage and vibration absorber, rotor trim control and vehicle orientation simultaneously. Rotor system faults are modeled by changing blade structural, inertial and aerodynamic properties. Both adjustable and component faults, such as misadjusted trim-tab, misadjusted pitch-control rod (PCR), imbalanced mass and pitch-control bearing freeplay, are investigated. Detailed SH-60 helicopter fuselage NASTRAN model is integrated into the analysis.; Validation study was performed using SH-60 helicopter flight test data. The prediction of fuselage natural frequencies show fairly large error compared to shake test data. Analytical predictions of fuselage baseline (without fault) 4/rev vibration and fault-induced 1/rev vibration and blade displacement deviations are compared with SH-60 flight test (with prescribed fault) data. The fault-induced 1/rev fuselage vibration (magnitude and phase) predicted by present analysis generally capture the trend of the flight test data, although prediction under-predicts. The large discrepancy of fault-induced 1/rev vibration magnitude at hover between prediction and flight test data partially comes from the variation of flight condition (not perfect hover) and partially due to the effect of the rotor-fuselage aerodynamic interaction (wake effect) at low speed which is not considered in the analysis. Also the differences in the phase prediction is not clear since only the magnitude and phase information were given instead of the original vibration time-history. The imbalanced mass fault causes higher 1/rev roll vibration that is insensitive to the airspeed. The misadjusted trim-tab fault induced 1/rev vertical vibration increases with airspeed. The misadjusted pitch-control rod fault causes high vibration at hover.; A parametric study was conducted to identify key factors that affect the fault-induced fuselage vibration. Analysis show that elastic fuselage model and precise hub modeling (inclusion of vibration absorbers) are essential to the vibration pre diction. The analysis shows that a compound fault can be expressed as a linear combination of individual faults involved. Aircraft operational parameters, such as gross-weight; center of gravity location, flight speed, flight path and aircraft configuration, have significant impact on the fault-induced 1/rev vibration. Prediction show that there are certain patterns in the fault-induced 1/rev hub-loads. Thus measuring both fuselage vibration and hub loads may benefit rotor system fault detection.
Keywords/Search Tags:Vibration, Rotor system fault, Fuselage, Coupled, Helicopter, Flight test data
Related items