Font Size: a A A

Heliospheric x-rays due to solar wind charge exchange

Posted on:2004-05-03Degree:Ph.DType:Dissertation
University:University of KansasCandidate:Robertson, Ina PiketFull Text:PDF
GTID:1462390011963831Subject:Physics
Abstract/Summary:
X-ray emission due to charge transfer between heavy solar wind ions and interstellar and geocoronal neutrals has been predicted to exist in both the heliosphere and in the geocorona. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft x-ray photons. Models have been created to simulate this type of x-ray emission with interstellar and geocoronal neutrals. Time variations in the x-ray emissions were studied by using measured solar wind proton fluxes. The Fahr hot model was used to determine interstellar neutral densities. It was found that x-rays from interstellar hydrogen showed little variation in their intensities. The greatest variation was in geocoronal x-rays, although x-rays from interstellar helium can show considerable variation when the look direction is through the helium cone. Simulated images of Earth's geocorona as seen from an observation point outside the geocorona were created. The locations of the bow shock and magnetopause are evident in these images. Time independent maps were created that showed steady-state x-ray intensities due to the interaction between the solar wind and both interstellar neutrals and the geocoronal neutrals as a function of look direction and time of year. In all cases, the x-ray intensity is highest when the view direction is towards the Sun, but the intensity is also relatively high for view directions intersecting the gravitational focusing cone of interstellar helium. Measured solar wind proton fluxes are also directly compared with the LTE (long term enhancements) part of the soft x-ray background measured by the Rontgen satellite ROSAT. A significant positive correlation exists. We also show a heliospheric/geocoronal x-ray intensity map for the conditions used by Snowden in producing the 1/4 keV channel soft x-ray background map in galactic coordinates. Our preliminary conclusion is that very roughly 50% of the total background soft x-ray intensity in the galactic plane and 25% at high galactic latitudes can be attributed to the charge transfer process operating within the solar system, with the remaining emission coming from outside our heliosphere.
Keywords/Search Tags:Solar, X-ray, Charge, Due, Geocoronal neutrals, Interstellar, Emission
Related items