Font Size: a A A

Investigation of air-breathing, hypersonic missile configurations within external box constraints

Posted on:2001-09-11Degree:Ph.DType:Dissertation
University:University of Maryland College ParkCandidate:Starkey, Ryan PeterFull Text:PDF
GTID:1462390014453262Subject:Engineering
Abstract/Summary:
Aspects relating to the aerodynamic, geometric, and propulsive design and analysis of missile-class, waverider-based hypersonic vehicles are explored. A quasi-one-dimensional engine model, including the effects of fuel injection, mixing, chemical production rates, heat transfer, and viscous losses is developed and utilized to assess the effects of finite rate hydrocarbon chemistry on optimized missile configurations. Resultant optimized single and double engine missile designs are shown for changes in fuel mixing length, fuel mixing efficiency, fuel injector location, and assumed fuel mass fraction. The effects of these different design conditions on the cruise range are explored, as well as perturbations around these design points for optimized vehicles. Aerodynamics are evaluated using a newly developed modified shock-expansion method. Missiles are optimized for steady-state trim conditions at the beginning of cruise using parallelized genetic algorithm optimization software developed for this study.; All missile designs are assumed to reach cruising altitude and velocity through the use of an external rocket booster. The missile is geometrically constrained to fit within the 0.61 m x 0.61 m x 4.27 m [2 foot x 2 foot x 14 foot] box limits for a Naval vertical launch tube and has a desired cruise range of 750 km [400 nm] at Mach 6. Investigations are also shown for the effects of various modeling assumptions: (1) shock-expansion method versus a new modified shock-expansion aerodynamic method, (2) boundary layer assumptions, (3) assumed combustor temperature profile versus finite rate chemistry computations, and (4) ratio of specific heats assumptions. An overall analysis and optimization toolkit is developed for quick calculation of hypersonic aerodynamics and propulsion with added insight into externally constrained vehicles. Results show that the optimized combustor designs were extremely sensitive to small changes in flow conditions and that high-fidelity chemistry modeling is required to capture the true physics affecting airbreathing engine-airframe integrated, missile scale vehicles at low hypersonic Mach numbers.
Keywords/Search Tags:Missile, Hypersonic, Vehicles
Related items