Font Size: a A A

New analysis and design procedures for ensuring gas turbine blades and adhesive bonded joints structural integrity and durability

Posted on:2001-04-30Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Yen, Hsin-YiFull Text:PDF
GTID:1462390014953766Subject:Engineering
Abstract/Summary:
Most load-carrying structural systems under severe operating conditions such as gas turbine engines usually demand durability, high reliability, light weight, and high performance. In turn, as it has been reported, a number of structural failures have occurred in aircraft engines during development testing and operational service. In order to prevent failures of turbine engines, the turbine blade vibration must be attenuated to an acceptable level. To achieve this goal, the blade has to be provided with higher damping, either externally or internally. The objective of this study is to explore the feasibility of using a stress dependent magnetomechanical surface coating material for enhancing high damping capacity on turbine blades. The results show that a 2% or 4% of blade thickness free surface magnetomechanical coating layer has a significant contribution to the damping enhancement and the reduction of vibratory stresses at various low and high frequency vibration modes under either non-rotating or rotating conditions.; Similar to the blade failure, the structural reliability and safety of the adhesive bonded joint, one of the most commonly used structural joint designs in the aerospace industry, is also a serious concern of the aircraft design community. Adhesive joints easily become weaker due to environmental degradation and/or improper manufacturing procedures. This often reduces structural durability and reliability significantly. This motivates us to develop a new finite element tool/procedure for assessing the interfacial disbonding mechanics of the single-lap joint with various imperfectly-bonded conditions in order to predict the adhesive bonded joint's strength more precisely during its service period. According to these conclusions, a new three-dimensional graphic mesh has been created to display the maximum stress variations under different amounts and sizes of disbonded area. This new procedure can be used as a basis for the development of a bonded joint reliability prediction method and accept/reject inspection criteria.
Keywords/Search Tags:Structural, Turbine, Bonded, Joint, Reliability, New, Blade
Related items