Font Size: a A A

Simulation and analysis of wing rock physics for a generic fighter model with three degrees-of-freedom

Posted on:2001-10-29Degree:Ph.DType:Dissertation
University:Air Force Institute of TechnologyCandidate:Saad, Ahmed AbdelazizFull Text:PDF
GTID:1462390014956768Subject:Engineering
Abstract/Summary:
Modern fighter designs have been associated with lateral self-excited oscillations known as “Wing Rock”. In this study, for the first time, wing rock is computationally simulated in three DoF: roll, sideslip, and vertical motion to study the effect of adding the sideslip and vertical motion. The results are for a generic fighter model consisting of a fore-body, a cropped delta wing, and a vertical fin. The effect of including the vertical fin is also studied. The interaction of aerodynamics and rigid-body dynamics during a single DoF wing rock for the wing-body configuration has been studied via snap shots of a cross-plane stagnation pressure distribution and tracing the instantaneous locations of vortex burst for an entire cycle of wing rock. An innovative explanation of the fluid mechanism that drives and sustains the motion has been introduced. The effect of adding the sideslip and vertical motion DoF to the simulations of the wing-body configuration was found to delay the onset and to reduce the amplitude of wing rock by about 50% with surprisingly no change in frequency. The wing rock simulation in three DoF was repeated for the full generic fighter model with the fin included. The aerodynamic effect of the fin was found to significantly delay the vortex burst on the upper surface of the wing. The net effect of the fin was found to augment the damping of the oscillations with significant increase in frequency.
Keywords/Search Tags:Wing rock, Generic fighter model, Fin, Effect, Three
Related items