| The near-surface geological site conditions in the upper tens of meters are one of the dominant factors in controlling the amplitude and variation of strong ground motion during large earthquakes. The understanding of these site effects comes primarily from surface recordings. For instance, different methods to estimate site response and their variability are studied using aftershock data for the 17 January 1994 M6.7 Northridge, California earthquake. A second approach corresponds to borehole measurements. We use the Garner Valley Downhole Array (GVDA), which consists of a set of seven downhole strong-motion instruments ranging from 0 to 500 meters depth, to study site response effects. The GVDA velocity structure is first studied, then the H/ V is evaluated, and finally some considerations of 2D and 3D basin effects are also shown.; These previous studies considered small to moderate earthquakes, where strain levels are small enough, so that linear wave propagation is assumed. However, for strong motions produced during large earthquakes, the soils behave nonlinearly. In this study we present evidence that nonlinearity can be directly observed in acceleration time histories such as Wildlife Refuge, 1987 Superstition Hills, CA; Kushiro Port station, 1993 Kushiro-Oki, Japan; among others. To understand the nature of nonlinear soil dynamics, we developed a model that includes anelastic dissipation of energy due to hysteresis. The hysteresis is described by the generalized Masing rules. This new hysteresis formulation, based on the classical Masing rules, has a functional representation, and depends only on one parameter that can be related to damping ratio tests. The coupling with pore pressure generation shows the degradation of the shear modulus and the yield stress during the cyclic response of the material. The simulations show amplitude reduction as well as the shift of the fundamental frequency to lower frequencies as observed on vertical arrays. The synthetic accelerograms show the development of intermittent behavior—high frequency peaks riding on low frequency carrier—as observed in acceleration records. Using the Kushiro Port and Port Island borehole arrays, we have modeled the recorded ground motions at the surface and different depths. The synthetic accelerations and response spectra show good agreement with the data. |