Font Size: a A A

Synthesis, Characterization, In Vitro Evaluation, and Preclinical Profiling of beta-Cyclodextrin Polyrotaxane Families for Use As Potential Niemann-Pick Type C Therapeutics

Posted on:2016-12-31Degree:Ph.DType:Dissertation
University:Purdue UniversityCandidate:Collins, Christopher JFull Text:PDF
GTID:1471390017981816Subject:Chemistry
Abstract/Summary:
Niemann-Pick Disease Type C (NPC) is a rare, autosomal recessive genetic disorder featuring a loss of proteins responsible for unesterified cholesterol (UC) trafficking through the late endosomes/lysosomes (LE/LY) of every cell of the body. Disruption of this pathway leads to abnormal accumulation and storage of UC and other lipids. A broad range of visceral and neurological symptoms result from this accumulation exhibiting a variable age of onset and a disease progression that is ultimately fatal. The disease has an incidence of approximately 1 in 120,000 live births and has no known effective treatment. beta-Cyclodextrin (beta-CD) are natural small molecules macrocycles composed of glucose units with a hydrophobic inner cavity and hydrophilic outer rims. beta-CD derivatives have recently been shown to be effective therapeutics for NPC in cellular and animal models. In the mouse model of the disease, beta-CD therapy increases overall lifetime by as much as 50% and slows the progression of neurodegeneration. The progress has led to the initiation of a National Institutes of Health phase I clinical trial. A main drawback of beta-CD administration is the poor pharmacokinetic profile characterized by rapid renal clearance of the drug through the urine. Libraries of beta-CD derivative carrying high molecular weight polyrotaxane (PR) systems have been designed to prevent glomerular filtration of the injected beta-CD dose. An initial family of unmodified beta-CD PRs was synthesized, characterized, and their therapeutic efficacy was tested in NPC fibroblasts. This was followed by screening of PRs consisting of mixed beta-CD derivative threading featuring charged sulfobutylether beta-CD. Finally, we sought to define PR structure-property effects on in vivo pharmacokinetics, biodistribution, toxicity, immunogenicity, and protein hard corona composition. This was accomplished using a family of gadolinium carrying PRs composed of triblock Pluronic co-polymers of varying molecular weights and hydrophilic/lipophilic ratios. The effect of varying threaded beta-CD derivative surface chemistry on PR mediated hemolysis and hard protein corona was also studied. Knowing if structure-property relationships exist in the in vivo performances of PR materials will help with building pre-clinical profile, selecting candidate materials for a given application, and understanding therapeutic outcomes.
Keywords/Search Tags:NPC, Beta-cd, Disease
Related items