| Colon cancer, a disease in which malignant tumors form in the tissues of colon, is the first commonest cancer and the second leading cause of cancer-related deaths in Hong Kong. The standard treatment options for colon cancer include surgery and chemotherapy. However, multidrug resistance (MDR) develops in nearly all patients with colon cancer. In fact, most of the cancer-related deaths are due to chemotherapy failure caused by MDR, which occurs during the course of cancer progression and chemotherapy. Thus, the reversal of MDR plays an important role in the successful chemotherapy for colon cancer. This study investigated such a pharmacological action in reversing MDR in colon cancer cells by tanshinones, targeting the two common mechanisms responsible for MDR, i.e. overexpression of ATP-binding cassette (ABC) transporters and suppression of apoptosis.;Overexpression of P-glycoprotein (P-gp), one of the most important ABC transporters, can mediate the efflux of drugs out of cancer cells, leading to MDR and chemotherapy failure. The reversal of P-gp-mediated MDR by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone was evaluated in colon cancer cells. Bi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased the P-gp-mediated digoxin efflux in Caco-2 cells. The two tanshinones potentiated the cytotoxicities of doxorubicin and irinotecan in P-gp overexpressing colon cancer SW620 Ad300 cells. Moreover, these two tanshinones also increased intracellular accumulation of P-gp substrate in SW620 Ad300 cells, presumably by down-regulating P-gp mRNA and protein levels, as well as inhibiting P-gp ATPase activity.;Suppression of apoptosis can lead to MDR in cancer cells to anticancer agents with pro-apoptotic property. Hence, this study also investigated the circumvention of resistance to apoptosis in drug resistant colon cancer cells by cryptotanshinone and dihydrotanshinone, two potential MDR-reversing tanshinones. The drug resistant SW620 Ad300 cells were still sensitive to both cryptotanshinone and dihydrotanshinone in the promotion of cell death. When compared with the parental SW620 cells, the two tanshinones induced less apoptosis but more autophagy in the drug resistant cells. Further studies showed that cell viability was increased after inhibition of autophagy by siRNA interference or autophagy inhibitor. Thus, autophagy induced by the two tanshinones was pro-cell death in SW620 Ad300 cells, which could overcome resistance to apoptosis.;In addition, suppression of apoptosis can be caused by p53 defects/mutations, which were found in more than 50% of all human cancers. Our results also showed that apoptosis and autophagy induced by cryptotanshinone and dihydrotanshinone were independent of the status of p53 in colon cancer cells. The p53-independent cytotoxic actions of the two tanshinones could be useful in overcoming resistance to apoptosis in cancer cells caused by p53 defects/mutations.;Taken together, the current findings indicate a great potential of cryptotanshinone and dihydrotanshinone in the reversal of MDR caused by P-gp overexpression and suppression of apoptosis. They are promising candidates to be further developed as therapeutic agents in the adjuvant therapy for colon cancer, especially for the multidrug resistant cancer types. |