Font Size: a A A

Characterization of corneal biomechanics using customized Atomic Force Microscopy techniques

Posted on:2015-11-03Degree:Ph.DType:Dissertation
University:University of MiamiCandidate:Dias, Janice MaxineFull Text:PDF
GTID:1474390020953172Subject:Biomedical engineering
Abstract/Summary:PDF Full Text Request
Corneal biomechanics has become an increasingly important field within ophthalmology. Striving to establish a relationship between corneal physiological structure and function, corneal biomechanics is an objective, quantitative measure that aids in the development and improvement of diagnostic and therapeutic methods for corneal-related diseases. The goal of this project was to advance the technology of Atomic Force Microscopy (AFM) as a suitable characterization technique within the field of corneal biomechanics. The studies of this project include the development of AFM instrumentation, experimental techniques, and models to measure the elastic, viscoelastic, and poroelastic properties of the cornea in situ. Such developed instrumentation, techniques, and models were then implemented to quantify the treatment efficacy of corneal crosslinking for keratoconus, the most prevalent corneal dystrophy in the United States. In addition, age implications of the treatment efficacy of corneal crosslinking were determined using corneal biomechanics measured from the developed AFM technology.
Keywords/Search Tags:Corneal biomechanics, AFM
PDF Full Text Request
Related items