Font Size: a A A

Design of new carbonaceous catalysts and photocatalysts for organic synthesis

Posted on:2011-02-21Degree:Ph.DType:Thesis
University:University of South DakotaCandidate:Rajpara, Vikul BFull Text:PDF
GTID:2441390002461234Subject:Engineering
Abstract/Summary:
Pristine and modified carbonaceous materials are introduced as convenient catalysts for oxidation, photooxidation and alkylation of aromatic hydrocarbons. Oxidation reactions have been carried out by air and effect of cyclohexene and light has also been investigated. Availability of the reagents, light source (ambient light), minimum chemical waste, low toxicity and reusability of the catalysts make developed processes green alternatives of traditional methods for the synthesis of industrially important organic compounds. Catalytic performance and selectivity of carbonaceous materials have been linked to their morphology (graphite, carbon black, multi-walled, single-walled carbon nanotubes, fullerene C60) and modification oxidation, conjugation with nanoparticles). The reported study is the first step toward targeted design of new carbonaceous catalysts for organic synthesis. Graphite is known for its electric conductivity and quantum dots are known for transfer of energy to attached molecules and their conjugation may provide a unique hybrid material for photocatalysis of organic reactions. Quantum dots with known number of functional group hold an especially great promise in the field of catalysis. However, controlling the number of functionalities on the surface of quantum dots is very challenging. We demonstrated monofuncationalization of gold nanoparticles using trityl (solid) support. Similar approach was used for the monofunctionalization of quantum dots and our preliminary data showed that quantum dots can be attached and detached from the solid support under mild conditions.
Keywords/Search Tags:Carbonaceous, Catalysts, Quantum dots, Organic
Related items