Font Size: a A A

Tribological behavior and film formation mechanisms of carbon nanopearls

Posted on:2010-10-17Degree:Ph.DType:Thesis
University:University of DaytonCandidate:Hunter, Chad NicholasFull Text:PDF
GTID:2441390002983294Subject:Engineering
Abstract/Summary:
Carbon nanopearls (CNPs) are amorphous carbon spheres that contain concentrically-oriented nanometer-sized graphitic flakes. Because of their spherical shape, size (∼150 nm), and structure consisting of concentrically oriented nano-sized sp2 flakes, CNPs are of interest for tribological applications, in particular for use in solid lubricant coatings. These studies were focused on investigating mechanisms of CNP lubrication, development of methods to deposit CNP onto substrates, synthesizing CNP-gold hybrid films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) and magnetron sputtering, and studying plasmas and other species present during film deposition using an Electrostatic Quadrupole Plasma (EQP) analyzer. CNPs deposited onto silicon using drop casting with methanol showed good lubricating properties in sliding contacts under dry conditions, where a transfer film was created in which morphology changed from nano-sized spheres to micron-sized agglomerates consisting of many highly deformed CNPs in which the nano-sized graphene flakes are sheared from the wrapped layer structure of the CNPs. The morphology of carbon nanopearl films deposited using a MAPLE system equipped with a 248 nm KrF excimer laser source was found to be influenced by multiple factors, including composition of the matrix solvent, laser energy and repetition rate, background pressure, and substrate temperature. The best parameters for depositing CNP films that are disperse, droplet-free and have the maximum amount of material deposited are as follows: toluene matrix, 700 mJ, 1 Hz, 100°C substrate temperature, and unregulated vacuum pressure.;During depositions using MAPLE and sputtering in argon, electron ionization of toluene vapor generated from the MAPLE target and charge exchange reactions between toluene vapor and the argon plasma generated by the magnetron caused carbon to be deposited onto the gold sputter target. Thin films deposited under these conditions contained high amounts of undesired carbon (99.36 atomic % carbon as measured by XPS) because carbon rather than gold was sputtered from the magnetron target surface. Carbon impurities of co-deposited films were reduced with increasing oxygen concentration using argon-oxygen mixtures; EQP analysis showed that reactive oxygen species such as O and O+ effectively remove unwanted carbon during co-deposition processes. The tribological behavior of films deposited using simultaneous MAPLE and magnetron sputtering was similar to hydrogenated Diamond-like Carbon (DLC) in that a structure transformation (graphitization) occurred in the wear track during cyclic loading resulting in low friction coefficients. In fact, carbon and hydrocarbon fragments from solvent vapor were incorporated into the films leading to formation of hydrogenated DLC-gold composites. This behavior occurs for frozen toluene MAPLE targets regardless of whether they are loaded with CNPs. The exception to this is in a humid air environment where higher friction coefficients are observed for CNP-loaded targets. In these studies, the potential of carbon nanopearls to create environmentally stable solid lubricants has been demonstrated for future aerospace needs. This development could drastically change current approaches of lubrication for space applications. Additionally a new MAPLE-sputtering process in which solvent-dispersed nano-scale materials are incorporated into metal and ceramic matrices was developed to enable synthesis of novel nanostructured hybrid materials for a variety of applications.
Keywords/Search Tags:Carbon, CNP, Cnps, MAPLE, Tribological, Film, Behavior
Related items