Font Size: a A A

Ultrafast Spectroscopy and Energy Transfer in an Organic/Inorganic Composite of Zinc Oxide and Graphite Oxide

Posted on:2017-04-20Degree:Ph.DType:Thesis
University:City University of New YorkCandidate:Secor, Jeff AFull Text:PDF
GTID:2441390005462748Subject:Molecular physics
Abstract/Summary:
This thesis describes the ultrafast processes in a hybrid organic/inorganic composite of Zinc (hydr)oxide and graphite oxide. The zinc phase is a large bandgap semi-conductor metal oxide with broadband visible emission from 430 - 600 nm caused by large density of surface and defects that act as trap states within the bandgap of the metal oxide. These surface states are observed to be brightly luminescent with long lifetimes. Steady state absorption, emission and Raman scattering provide a first look into the nature and effects of the hybridized defect states. Different luminescent structures are observed when the energy of excitation lies below the fundamental band edge of the zinc phase eventhough there is no structure in the absorption spectra caused by these intermediate states. This is analyzed with tunable laser excitation energy and the appearance of the blue-shifted emission with sub band gap excitation energies is attributed to a range of defect levels and the charge transfer state near the band edge of ZnO that becomes unaccessible under resonant absorption due to band bending effects of the excited electrons in the conduction band. In the time domain, the composite system GO shows very long and reversible nanosecond decay characteristics of the GO and shortened decay processes in the zinc phase. It is hypothesized that the overlap of the defect states of the two materials leads to strong interaction of the dense defect states of each material. To analyze this, spectrally and polarization resolved ultrafast decays are compared between the components in neat form and in composite form to give details on the ultrafast transfer/decay processes. The lifetimes of the different spectral regions of the emission show multi-exponential behavior that can be grouped into three energy regions: the zinc phase exciton, the charge transfer/ surface state overlap emission, and the defect level emission. Comparison of each region as a function of excitation energy build up a energy landscape of the states within the composite to determine the energy transfer processes between the zinc phase and the graphite oxide phase.
Keywords/Search Tags:Zinc, Oxide, Composite, Energy, Graphite, Ultrafast, Transfer, Processes
Related items