Font Size: a A A

Fabrication of transition metal-containing nanostructures via polymer templates for a multitude of applications

Posted on:2007-02-03Degree:Ph.DType:Thesis
University:University of MichiganCandidate:Lu, Jennifer QingFull Text:PDF
GTID:2441390005475972Subject:Engineering
Abstract/Summary:
Nanostructures such as carbon nanotubes and semiconducting nanowires offer great technological promise due to their remarkable properties. The lack of a rational synthesis method prevents fabricating these nanostructures with desirable and consistent properties at predefined locations for device applications. In this thesis, employing polymer templates, a variety of highly ordered catalytically active transition metal nanostructures, ranging from single metallic nanoparticles of Fe, Co, Ni, Au and bimetallic nanoparticles of Ni/Fe and Co/Mo to Fe-rich silicon oxide nanodomains with uniform and tunable size and spacing have been successfully synthesized. These nanostructures have been demonstrated to be excellent catalyst systems for the synthesis of carbon nanotube and silicon nanowire. High quality, small diameter carbon nanotubes and nanowires with narrow size distribution have been successfully attained. Because these catalytically active nanostructures are uniformly distributed and do not agglomerate at the growth temperatures, uniform, high density and high quality carbon nanotube mats have been obtained. Since this polymer template approach is fully compatible with conventional top-down photolithography, lithographically selective growth of carbon nanotubes on a surface or suspended carbon nanotubes across trenches have been produced by using existing semiconductor processing. We have also shown the feasibility of producing carbon nanotubes and silicon nanowires at predefined locations on a wafer format and established a wafer-level carbon nanotube based device fabrication process. The ability of the polymer template approach to control catalyst systems at the nano-, micro- and macro-scales paves a pathway for commercialization of these 1D nanostructure-enabled devices.; Beside producing well-defined, highly ordered discrete catalytically active metal-containing nanostructures by the polymer template approach, Au and Ag nanotextured surfaces have also been attained by using a self-assembled ferrocenylsilane-based inorganic block copolymer template. These Au and Ag nanotextured surfaces exhibit different surface plasmon behavior than the nanotextured surface. Greatly enhanced and uniform Raman scattering have been observed on Ag nanotextured surfaces. Highly sensitive Au nanotextured surfaces suggest their potential application as sensing surfaces for SPR-based biodetection.; This simple fabrication technique of producing inorganic nanostructures with adjustable properties such as size, spacing and composition offers great promise for both fundamental research and technological development.
Keywords/Search Tags:Nanostructures, Carbon nanotubes, Polymer template, Ag nanotextured surfaces, Fabrication
Related items