Font Size: a A A

Design of a MOSFET-based pulsed power supply for electroporation

Posted on:2007-03-08Degree:M.A.ScType:Thesis
University:University of Waterloo (Canada)Candidate:Grenier, Jason RFull Text:PDF
GTID:2442390005966370Subject:Engineering
Abstract/Summary:
In this research, two Metal Oxide Field Effect Transistor (MOSFET)-based pulsed power supplies that are used for electroporation experiments were designed and built. The first used up to three MOSFETs in parallel to deliver high voltage pulses to highly conductive loads. To produce pulses with higher voltages, a second pulsed power supply using two MOSFETs connected in series was designed and built. The parallel and series MOSFET-based pulsed power supplies are capable of producing controllable square pulses with widths of a few hundred nanoseconds to dc and amplitudes up to 1500 V and 3000 V, respectively. The load in this study is a 1-mm electroporation cuvette filled with a buffer solution that is varied in conductivity from 0.7 mS/m to 1000 mS/m. The results indicate that by controlling the circuit parameters such as the number of parallel MOSFETs, gate resistance, energy storage capacitance, and the parameters of the MOSFET driver gating pulses, the output pulse parameters can be made almost independent of the load conductivity.; Using the pulsed power supplies designed in this work, an investigation into electroporation-mediated delivery of a plasmid DNA molecule into the pathogenic bacterium E. coli O157:H7, was conducted. It was concluded that increasing the electric field strength and pulse amplitude resulted in an increase in the number of transformants. However, increasing the number of pulses had the effect of reducing the number of transformants. In all of the experiments, the number of cells that were inactivated by the exposure to the pulsed electric field was measured. (Abstract shortened by UMI.)...
Keywords/Search Tags:Pulsed, Field
Related items