Font Size: a A A

Silicon carbide RF-MEM resonators

Posted on:2007-11-16Degree:M.EngType:Thesis
University:McGill University (Canada)Candidate:Dusatko, Tomas AFull Text:PDF
GTID:2451390005482379Subject:Engineering
Abstract/Summary:
A low-temperature (<300°C) method to fabricate electrostatically actuated microelectromechanical (MEM) clamped-clamped beam resonators has been developed. It utilizes an amorphous silicon carbide (SiC) structural layer and a thin polyimide spacer. The resonator beam is constructed by DC sputtering a tri-layer composite of low-stress SiC and aluminum over the thin polyimide sacrificial layer, and is then released using a microwave O 2 plasma etch. Deposition parameters have been optimized to yield low-stress films (<50MPa), in order to minimize the chance of stress-induced buckling or fracture in both the SiC and aluminum. Characterization of the deposited SiC was performed using several different techniques including scanning electron microscopy, EDX and XRD.;Several different clamped-clamped beam resonator designs were successfully fabricated and tested using a custom built vacuum system, with measured frequencies ranging from 5MHz to 25MHz. A novel thermal tuning method is also demonstrated, using integrated heaters directly on the resonant structure to exploit the temperature dependence of the Young's modulus and thermally induced stresses.
Keywords/Search Tags:Silicon carbide, Clamped-clamped beam
Related items