Font Size: a A A

Process modeling of micro-cutting including strain gradient effects

Posted on:2006-09-15Degree:Ph.DType:Thesis
University:Georgia Institute of TechnologyCandidate:Liu, KaiFull Text:PDF
GTID:2451390005997175Subject:Engineering
Abstract/Summary:
At micrometer length scales of material removal, size effect is observed in mechanical micro-cutting where the energy per unit volume i.e. specific cutting energy increases nonlinearly as the uncut chip thickness is reduced from several hundred microns to a few microns (or less). There is no consensus in the literature on the cutting mechanism that causes this size effect. Noticeable discrepancy is also observed in the surface roughness produced at small feeds in micro-turning between the theoretical and the measured roughness. To date, there has been little effort made to develop a detailed process model for micro-cutting to accurately predict the size effect in specific cutting energy, and to develop a fundamental understanding of surface generation at the low feeds typical of micro-cutting processes.; The main objective of this thesis is therefore to develop a predictive process model of micro-cutting of ductile metals that is capable of accurately predicting the size effect in specific cutting energy based on strain gradient based material strengthening considerations. In addition, this thesis attempts to explain the discrepancy between the theoretical and measured surface roughness at small feeds in micro-turning via a model that accounts for the size effect due to material strengthening.; A coupled thermo-mechanical finite element model formulation incorporating strain gradient plasticity is developed to simulate orthogonal micro-cutting process. The thermo-mechanical model is experimentally validated in orthogonal micro-cutting of a strain rate insensitive aluminum alloy Al5083-H116. The model is then used to analyze the contributions of two major material strengthening factors to the size effect in specific cutting energy: strain gradient and temperature. The effects of cutting edge radius on the specific cutting energy and its role relative to the material length scale arising from strain gradient plasticity are also examined.; A surface roughness model for micro-turning that incorporates the effects of kinematic roughness, cutting edge roughness and surface roughening due to plastic side flow is developed and shown to explain the observed discrepancy between the theoretical and measured surface roughness in micro-cutting. In addition, the model is found to accurately capture the increase in surface roughness at very low feeds.
Keywords/Search Tags:Micro-cutting, Model, Effect, Strain gradient, Surface roughness, Process, Material, Feeds
Related items