Font Size: a A A

Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

Posted on:2012-05-15Degree:Ph.DType:Thesis
University:University of California, Santa BarbaraCandidate:Neilson, James RFull Text:PDF
GTID:2451390008494448Subject:Chemistry
Abstract/Summary:
A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition or structure, yet subtle and systematic changes in the mean-field spin interaction strength and spin entropy loss. Meanwhile, neutron powder diffraction reveals a fully compensated N´eel state; a detailed analysis of the local structure defines the aperiodic clusters of polyhedra responsible for magnetic order. The rate of hydrolysis of metal precursors modulates the disposition of these polyhedral clusters. The strategy of kinetically controlling aqueous hydrolysis also extends to the formation of stoichiometrically ordered bimetallic crystals [MSn(OH)6], where the hydrolysis behavior for dissimilar metal cations must be controlled via counteranions or precursor selection. In the formation of these ordered double perovskite hydroxides, the rate of hydrolysis is held constant in the limit of kinetic control. Instead, the propensities of different cations to undergo controlled hydrolysis are probed by their ability to form ordered crystals. Collectively, these studies demonstrate how systematic variation in the kinetic conditions of materials preparation and the character of each solute control the structure and properties of materials, with a precision not attainable through traditional or near-equilibrium approaches.
Keywords/Search Tags:Structure, Hydrolysis, Materials, Kinetic control, Crystals
Related items