Font Size: a A A

Dynamics and Limiting Mechanisms of Self-Aligned Carbon Nanotube Growth

Posted on:2013-08-02Degree:Ph.DType:Thesis
University:University of MichiganCandidate:Meshot, Eric RyanFull Text:PDF
GTID:2451390008984097Subject:Engineering
Abstract/Summary:
Carbon nanotubes (CNTs) are long, cylindrical molecules, which boast exceptional tensile strength and large thermal and electrical conductivities. Vertically aligned CNT "forests" have promising potential uses, including dry adhesives, electrical interconnects, light emitters, thermal interface materials, gas and liquid filters, composite reinforcements, and photonic crystals. Manufacturing indefinitely long CNTs may realize dreams of CNT-based cables and wires having stiffness, strength, and transport properties exceeding today's best metal alloys and advanced fibers. However, the functional properties of CNT forests have so far fallen short of those of individual CNTs due to low packing fraction, polydisperse diameters, and relatively short lengths.;Toward the eventual goal of bridging this structure-property relationship, my dissertation presents a novel set of in situ and ex situ characterization tools for CNT forest growth by chemical vapor deposition (CVD), as well as the use of these tools to investigate the limiting mechanisms thereof. In situ X-ray scattering reveals the dynamics of catalyst thin film dewetting into nanoparticle growth sites, the initial self-organization of the CNT forest, and the abrupt self-termination of growth. Quantification of catalyst and CNT sizes show that they are inevitably polydisperse, regardless of synthesis conditions. To overcome this, a novel method is introduced for templated dewetting of the catalyst film toward the formation of ordered, monodisperse particles using nanoporous anodic alumina. Further, a map of thermal conditions is explored by independently tuning the temperatures of the catalyst and gaseous precursors, thereby establishing a set of rules for engineering crucial characteristics of forest growth, including CNT diameter, structural quality, vertical alignment, as well as rate and lifetime of the reaction. Finally, aligned CNT ensembles are used as templates to direct the self-assembly of fullerene C60, creating hybrid films with high photoconductive gain, thereby demonstrating an immediate application of this exciting material.;These studies represent many new insights into the so-called "birth, life, and death" of CNT growth, and they have important implications for future work in synthesis of advanced carbon materials, including CNTs, fullerenes, and graphene. Meanwhile, these results have immediate applicability to efficient CNT manufacturing, improved characterization, and new hybrid materials for energy conversion.
Keywords/Search Tags:CNT, Growth, Cnts
Related items