Font Size: a A A

MEMS microbial fuel cells and photosynthetic electrochemical cells

Posted on:2006-07-18Degree:Ph.DType:Thesis
University:University of California, BerkeleyCandidate:Lam, Kien-BangFull Text:PDF
GTID:2452390008470475Subject:Engineering
Abstract/Summary:
In this dissertation, we present three MEMS (Micro-electro-mechanical Systems) biological electrochemical cells: (1) a microbial fuel cell (muMFC) utilizing glucose as the bio-fuel and live baker's yeast as the bio-catalyst; (2) a photosynthetic electrochemical cell (muPEC1) based on unicellular bacteria Anabaena as the biological photo-electrical converter; and (3) a second photosynthetic electrochemical cell (muPEC2) powered by photosynthetic subcellular plant organelles---thylakoids---as the biocatalyst.; In the MEMS microbial fuel cell, as the yeast metabolized glucose, electrons were liberated within the organism. These electrons were captured by a fuel cell fabricated from Si and glass using micromachining technologies. In this fuel cell, glucose and live yeast were mixed in solution with a diffusional redox mediator that "siphoned" those electrons from the yeast cells and donated them to the anode. The electrons traveled through an external load to the cathode, where they were passed to an electron acceptor agent (ferricyanide). Experimentally, the muMFC generated a peak open circuit voltage of 450 mV, peak current density of 15 muA/cm2, and corresponding power density of 2.3 nW/cm2.; The first MEMS photosynthetic electrochemical cell harnessed Anabaena to liberate electrons from water under illumination and captured those electrons in a micromachined fuel cell similar to the muPFC. Experimentally, under the illumination of a desk lamp 60 W bulb, the muPEC1 produced 400 mV peak open circuit voltage, 2.0 muA/cm2 current density, and 0.04 nW/cm2 power density. There was one unintuitive feature of the muPEC1---it was capable of sustaining electrical output in the dark comparable to output in the light, even when photosynthesis did not contribute electrons in the dark. It did this by reverting to a microbial fuel cell in the dark, metabolizing the glucose that it had generated for itself.; In the second version of our photosynthetic electrochemical cell (muPEC2), the MEMS design, microfabrication, and assembly were improved. Moreover, instead of utilizing live cultures of photosynthetic bacteria, we isolated from spinach just the photosynthetic sub-cellular organelles called thylakoids. By harnessing just thylakoids, the complexities of whole, live photosynthetic bacteria were reduced. Under illumination intensity of 2000 mumol photons/m2/s (approximately the solar intensity of a cloudless spring day), the muPEC2 generated a peak 480 mV open circuit voltage, 1.0 muA/cm2 , and 5.4 pW/cm2.; To increase the energy conversion efficiency of these MEMS fuel cells, we proposed immobilizing the thylakoids and electron mediators directly onto the electrode using "bioelectrocatalytic" self-assembled monolayers (bio-SAMs). Immobilization of thylakoids onto bio-SAMs of cystamine and pyrroloquinoline quinone (PQQ) was demonstrated for the anode. When such bio-SAMs are optimized, we expect marked efficiency gains for MEMS microbial fuel cells and photosynthetic electrochemical cells, such that they could rival more conventional power technologies.
Keywords/Search Tags:Fuel cell, MEMS, Open circuit voltage, Glucose
Related items