Font Size: a A A

Energy accounting and optimization for mobile systems

Posted on:2014-06-15Degree:Ph.DType:Thesis
University:Rice UniversityCandidate:Dong, MianFull Text:PDF
GTID:2452390008961518Subject:Engineering
Abstract/Summary:
Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets.;In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms.;We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can be, show that existing BEM solutions are unnecessarily complicated yet underperforming by 20% compared to OEM.
Keywords/Search Tags:Energy, System
Related items