Font Size: a A A

Engineering tissue constructs to mimic native aortic and pulmonary valve leaflets' structures and mechanics

Posted on:2014-08-31Degree:Ph.DType:Thesis
University:The Pennsylvania State UniversityCandidate:Masoumi, NafisehFull Text:PDF
GTID:2454390008951143Subject:Engineering
Abstract/Summary:
There are several disadvantages correlated with current heart valve replacement, including anticoagulation therapy for patients with mechanical valves and the low durability of bioprosthetic valves. The non-viable nature of such devices is a critical drawback especially for pediatric cases due to the inability of the graft to grow in vivo with the patients. A tissue engineered heart valve (TEHV) with remodeling and growth ability, is conceptually appealing to use in the surgical repair and could serve as a permanent replacements when operating for pediatric valvular lesions. It is critical that scaffolds for functional heart valve tissue engineering, be capable of mimicking the native leaflet's structure and mechanical properties at the time of implantation. Meanwhile, the scaffolds should be able to support cellular proliferation and native-like tissue formation as the TEHV remodels toward a scaffold-free state.;Our overall hypothesis is that an "ideal" engineered construct, designed based on native leaflet's structure and mechanics, will complement a native heart valve leaflet in providing benchmarks for use in the design of clinically-applicable TEHV. This hypothesis was addressed through several experiments conducted in the present study. To establish a functional biomimetic TEHV, we developed scaffolds capable of matching the anisotropic stiffness of native leaflet while promoting native-like cell and collagen content and supporting the ECM generation. Scaffolds with various polymer contents (e.g., poly (glycerol sebacate) (PGS) and poly (epsilon-caprolactone) (PCL)) and structural designs (e.g., microfabricated and microfibrous scaffolds), were fabricated based on native leaflet's structure and mechanics. It was found that the tri-layered scaffold, designed with assembly of microfabricated PGS and microfibrous PGS/PCL was a functional leaflet capable of promoting tissue formation. Furthermore, to investigate the effect of cyclic stress and flexure individually on the TEHV development, we designed a simple and novel stretch-flexure bioreactor in which samples were subjected to well-defined stimulations with a controlled strain-rate. The stretch and flexure was found to accelerate and increase tissue formation on the microfabricated PGS scaffolds cultivated in the bioreactors.
Keywords/Search Tags:Tissue, Valve, Native, Scaffolds, PGS, TEHV
Related items