Font Size: a A A

Thermoplastic polyurethane (TPU)/polyolefin (PO) blends

Posted on:2004-11-02Degree:Ph.DType:Thesis
University:University of MinnesotaCandidate:Lu, QiweiFull Text:PDF
GTID:2461390011973502Subject:Engineering
Abstract/Summary:
Thermoplastic polyurethane (TPU) is a very important material with high versatility and superior physical properties. Melt blending TPU with metallocene polyolefin (PO) can lower TPU cost and improve polyolefin properties like abrasion resistance, adhesion, and paintability. Since TPU and non-polar PO blends are completely immiscible, efficient compatibilizers become the key issue and remain challenging. My main thesis work is to develop and study compatibilized TPU/PO blends. Although reactive compatibilization is considered the most efficient method, fast interfacial reactions between highly reactive functional groups are necessary to generate compatibilizers within usually short processing time. It is known that the urethane linkage (carbamate -NHCOO-) in TPU can reversibly dissociate to generate highly reactive isocyanates at melt temperatures. To find out the best reactive compatibilization, three approaches were employed on different molecular scales: (1) model urethane compound (dibutyl & dioctyl 4,4'-methylenebis(phenyl carbamate)) and small functional molecule (primary amine, secondary amine, hydroxyl, acid, anhydride, and epoxide) reactions at 200°C monitored by nuclear magnetic resonance and Fourier-transform infrared to examine the basic chemistry; (2) short, model TPU's with different chemical structures blended with functional polymers including poly(ethylene glycol) and polybutadiene to explore the effect of interface in immiscible mixtures; (3) melt blending of a commercial TPU with polypropylene (PP), further involving more complicated morphology, using different types of functional PP's (note: amine functional PP's were prepared by melt amination) as compatibilizers followed by rheological, morphological, thermal, and mechanical characterizations.;Besides the core thesis project on TPU blends, other related work that has been accomplished includes: (1) adhesion between TPU and PP; (2) rheological properties of TPU; (3) block copolymer formation by reactive coupling. In the first work, the unique interfacial reactions were applied to promote TPU-PP adhesion that was quantified by asymmetric double cantilever beam test. In the second study, the abnormally high flow activation energy of TPU was explained by simultaneously investigating the effect of temperature and thermal degradation on the melt viscosity. In the third project, block copolymers were prepared by rapid reactive coupling of amine and isocyanate functional polymers and the reaction kinetics were also studied.
Keywords/Search Tags:TPU, Reactive, Functional, Melt, Blends, Amine
Related items