Font Size: a A A

Effect of crystallographic texture and dislocation hardening on limit strain in sheet metal forming

Posted on:2001-02-25Degree:Ph.DType:Thesis
University:Hong Kong Polytechnic (People's Republic of China)Candidate:Wen, XiyuFull Text:PDF
GTID:2461390014452851Subject:Engineering
Abstract/Summary:
In the metal industry, sheet metals are widely used to produce packaging materials for consumer goods, for structures such as automobilse, and for building construction and transportation. The desired shape of the products is imparted by plastic deformation in either the cold or hot state. Traditionally, the prediction of the forming limit of sheet metals is based on tensile tests, simulation tests and continuum mathematical models. Continuum models used in the prediction of the plastic behavior of sheet metals are based on average values of mechanical properties such as elongation, yield strength, work hardening and work-hardening rate, which are usually derived from tensile tests. Although attempts have been made to abandon the phenomenological description of the yield function by applying the theory of crystal plasticity to calculate the yield surface of texture polycrystals and hence the limit strains, only the average properties of the microstructure (e.g., the crystallographic texture of the bulk sheet) have been taken into account. So far, there has been no model for the prediction of the strain path and the limit strain of sheet metals that takes into account the effect of individual grain orientation and the dislocation property.; In this thesis, different approaches in the study of plastic deformation are reviewed from the view-point of both macroplasticity and microplasticity. Instead of relying on a unique flow rule to describe the stress and strain relationship, the role of work hardening in the instability process of sheet metal and hence the flow localization phenomenon is explored from a study of the changes in the orientation of the constituent crystallites and from the changes in the dislocation density associated with different grain orientations during the course of large biaxial deformation. The changes in the crystallographic textures of an aluminium sheet sample deformed under various stress states from plane-strain tension to equi-biaxial tension have been followed. From X-ray diffraction and ODF(orientation distribution function) data, the orientation hardening characteristics as well as the dislocation hardening characteristics of the sheet samples as well as the major texture components have also been determined. (Abstract shortened by UMI.)...
Keywords/Search Tags:Sheet, Texture, Hardening, Limit, Strain, Dislocation, Crystallographic
Related items