Font Size: a A A

COD balances in biological nutrient (nitrogen and phosphorus) removal activated sludge systems

Posted on:2000-04-09Degree:Ph.DType:Thesis
University:McMaster University (Canada)Candidate:Copp, John BlairFull Text:PDF
GTID:2461390014962246Subject:Engineering
Abstract/Summary:
This research set out to investigate reported anomalies in the calculation of COD balances in biological nutrient (nitrogen and phosphorus) removal (BNR) activated sludge systems. For non-BNR systems, accurate COD balances are consistently attainable from experimental measurements. That is, influent COD can be accounted for in the effluent flow, waste sludge stream, and mass of oxygen utilised for carbonaceous oxidation. For BNR systems, in a number of instances where COD balances have been performed, the balances do not close. That is, the sum of the COD leaving the system is as much as 20% less than the COD entering the system, and thus there is an apparent COD ‘loss’. In attempting to explain the problem, a laboratory based experimental program was developed which isolated specific areas of interest within BNR systems. The study involved two main experimental phases.; In the first experimental phase, a closed denitrification assay technique was developed. This assay technique allowed specific aspects which have relevance to be evaluated: the nitrate-to-oxygen conversion factor, and the yield of activated sludge organisms under anoxic conditions. The advantages of the closed assay were that all of the needed COD balance terms were independently measurable, and the denitrification system was sealed which isolated the assay environment from the surrounding environment and minimised the effects of external inputs (i.e. oxygen transfer from the air to the liquid).; In the second experimental phase, an excess biological phosphorus removal (EBPR) system was operated to investigate the influence of the influent COD to phosphorus ratio on EBPR biological activity and COD balance calculations. The EBPR system was a laboratory-scale sequencing batch reactor (SBR) which was extensively monitored over an eight month period. This allowed for the investigation of several factors such as, the rate of anaerobic phosphorus release and COD uptake, the ratio of anaerobic phosphorus released to COD taken up, and the rate of aerobic phosphorus uptake. The system also allowed for the calculation of COD balances.; The main body of this thesis is presented as a series of five papers. The first paper (Chapter 3) presents a study on the nitrate-to-oxygen conversion factor. (Abstract shortened by UMI.)...
Keywords/Search Tags:COD, Phosphorus, Biological, Activated sludge, System, Removal
Related items