Font Size: a A A

Signal compounds involved with plant perception and response to microbes alter plant physiological activities and growth of crop plants

Posted on:2004-01-17Degree:Ph.DType:Thesis
University:McGill University (Canada)Candidate:Khan, WajahatullahFull Text:PDF
GTID:2463390011960340Subject:Biology
Abstract/Summary:
Recent preliminary data have suggested that microbe-to-plant signals, and plant internal signals elicited by microbial signals, affect aspects of plant physiology, development and growth. The reported research investigated the responses of plants to signal compounds of microbial and plant origin, such as lipo-chitooligosaccharides (LCOs - signal molecules in rhizobia-legume associations), chitin and chitosan (present in fungal cell walls), and phenolic compounds (salicylic acid, acetylsalicylic acid and gentisic acid - internal signals in plants, often affected by signals from microbes). Phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) are key enzymes of the phenylpropanoid pathway. Oligomers of chitin and chitosan increased the activities of both PAL and TAL in soybean leaves. The degree of increase was dependent on oligomer chain length and time after treatment. LCO [Nod Bj V (C18:1 , MeFuc)] was isolated from Bradyrhizobium japonicum strain 532C. When Arabidopsis thaliana plants were grown for two weeks on agar containing this LCO (10-8M) or chitin pentamer (10-4 M), they had greater root length, root diameter, root surface area and number of root tips than control plants. Chitosan (tetramer and pentamer) did not have this effect. Chitin and chitosan were also tested for effects on corn and soybean photosynthetic rates and growth. High molecular weight chitosan generally reduced photosynthetic rates, but did not reduce the growth of corn or soybean. However, foliar application of 10-6 M LCO to corn leaves increased photosynthetic rates (up to 36%). Foliar application of lumichrome (10-5 and 10-6 M), a breakdown product of riboflavin produced by some rhizosphere bacteria, to corn (C4 plant) and soybean (C3 plant) increased photosynthetic rates (up to 6%). Foliar application of lumichrome (10-5 M) increased soybean leaf area and shoot dry weight. Foliar application of SA, acetyl salicylic acid (ASA) and gentisic acid (GTA) all enhanced photosynthesis in both soybean and corn, however this resulted in increased leaf areas and shoot dry weights in soybean and in corn only for GTA (10-3 M). Overall, the work reported here indicates that a set of signals related to microbe-plant interactions can modify plant physiology and development leading to increased productivity.
Keywords/Search Tags:Plant, Signal, Increased, Growth, Foliar application, Compounds, Photosynthetic rates
Related items