Font Size: a A A

Pre-B Cell Colony-Enhancing Factor (PBEF) Promotes Neutrophil Inflammatory Function Through Enzymatic and Non-enzymatic Mechanisms

Posted on:2012-01-21Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Malam, ZeenatFull Text:PDF
GTID:2464390011469556Subject:Health Sciences
Abstract/Summary:
Pre-B Cell Colony-Enhancing Factor (PBEF) is a cytokine-like molecule that functions as a nicotinamide phosphoribosyl transferase (Nampt) in a salvage pathway of NAD biosynthesis. PBEF has well-characterized activity as an extracellular inflammatory mediator and has been proposed to signal through the insulin receptor (IR). As neutrophils are key effectors of the innate immune response to infection and injury, we hypothesized that PBEF promotes pro-inflammatory function in neutrophils and that these pro-inflammatory effects may occur through interactions with the neutrophil IR or through PBEF's enzymatic Nampt activity. Our studies focused on two important facets of neutrophil inflammatory function: their ability to generate reactive oxygen species (ROS) and undergo constitutive apoptosis. We found that, although PBEF does not activate oxidative burst on its own, it primes for ROS generation through the NADPH oxidase. PBEF promotes membrane translocation of cytosolic NADPH oxidase subunits p40phox and p47phox, but not p67phox, induces p40phox phosphorylation and activates Rac. Priming, translocation and phosphorylation are dependent on activation of p38 and ERK mitogen activated protein kinases. PBEF priming of neutrophils occurs independent of its Nampt capacity or of interactions with IR. We next investigated the effects of PBEF on neutrophil constitutive apoptosis. Our lab previously established that extracellular PBEF delays neutrophil apoptosis. Accordingly, we next investigated the mechanism through which this delay was occurring. PBEF-induced delayed apoptosis was enhanced in the presence of Nampt substrates, and NAD alone could delay apoptosis to an extent comparable to PBEF. Delayed apoptosis was blocked by a Nampt inhibitor and was lacking when a mutated PBEF deficient in Nampt activity was utilized. The cell-surface NAD glycohydrolase, CD38, can convert NAD to cyclic ADP-ribose (cADPR). Blocking CD38 activity with a blocking antibody partially reversed the delay of apoptosis induced by PBEF in conjunction with its substrates, and delayed apoptosis could be achieved by addition of the CD38 product cADPR. Finally, we found that delayed apoptosis induced by PBEF did not involve IR. These results indicate that PBEF can prime for enhanced oxidative burst and delay apoptosis in neutrophils, and that these phenomena occur through distinct mechanisms.
Keywords/Search Tags:Pre-b cell colony-enhancing factor, Neutrophil, Apoptosis, NADPH oxidase, Oxidative burst, PBEF promotes
Related items