Font Size: a A A

Simulation-based Discovery of Cyclic Peptide Nanotubes

Posted on:2016-01-11Degree:Ph.DType:Thesis
University:Northwestern UniversityCandidate:Ruiz Pestana, Luis AFull Text:PDF
GTID:2471390017471474Subject:Mechanical engineering
Abstract/Summary:
Today, there is a growing need for environmentally friendly synthetic membranes with selective transport capabilities to address some of society's most pressing issues, such as carbon dioxide pollution, or access to clean water. While conventional membranes cannot stand up to the challenge, thin nanocomposite membranes, where vertically aligned subnanometer pores (e.g. nanotubes) are embedded in a thin polymeric film, promise to overcome some of the current limitations, namely, achieving a monodisperse distribution of subnanometer size pores, vertical pore alignment across the membrane thickness, and tunability of the pore surface chemistry. Self-assembled cyclic peptide nanotubes (CPNs), are particularly promising as selective nanopores because the pore size can be controlled at the subnanometer level, exhibit high chemical design flexibility, and display remarkable mechanical stability. In addition, when conjugated with polymer chains, the cyclic peptides can co-assemble in block copolymer domains to form nanoporous thin films. CPNs are thus well positioned to tackle persistent challenges in molecular separation applications. However, our poor understanding of the physics underlying their remarkable properties prevents the rational design and implementation of CPNs in technologically relevant membranes. In this dissertation, we use a simulation-based approach, in particular molecular dynamics (MD) simulations, to investigate the critical knowledge gaps hindering the implementation of CPNs. Computational mechanical tests show that, despite the weak nature of the stabilizing hydrogen bonds and the small cross section, CPNs display a Young's modulus of approximately 20 GPa and a maximum strength of around 1 GPa, placing them among the strongest proteinaceous materials known. Simulations of the self-assembly process reveal that CPNs grow by self-similar coarsening, contrary to other low-dimensional peptide systems, such as amyloids, that are believed to grow through nucleation and elongation. We also establish a generic route that does not require complex chemical synthesis pathways or elaborated design rules to direct the self-assembly of binary mixtures of polymer conjugated cyclic peptides towards nanotubes with specific stripped patterns. The study of the molecular transport properties shows that bioinspired single point amino acid mutations can be effectively used to regulate the ion flow rate over an order of magnitude depending on the size and polarity of the functional groups inserted in the nanotube lumen. Our computational framework circumvents synthetic challenges, and lays the foundation for developing artificial nanochannels for separation applications.
Keywords/Search Tags:Cyclic, Peptide, Nanotubes, Membranes
Related items