Font Size: a A A

Synthesis and Characterization of Metal-Organic Frameworks (MOFs) That Are Difficult to Access De Novo

Posted on:2016-09-05Degree:Ph.DType:Thesis
University:Northwestern UniversityCandidate:Karagiaridi, OlgaFull Text:PDF
GTID:2471390017484150Subject:Analytical Chemistry
Abstract/Summary:
Metal-organic frameworks (MOFs) are a class of intriguing hybrid materials, comprised of metal-based nodes joined by organic linkers into a crystalline, porous, three-dimensional lattice. Their signature properties (well-defined surfaces, tailorability and ultra-high porosity) render them promising candidates for many applications, including, but not limited to, gas storage, gas separation, catalysis and sensing.;One of the greatest challenges associated with MOF synthesis lies in the fact that obtaining a desired MOF structure that is tailored to perform a specific application is often not trivial. Traditional synthetic pathways termed "de novo synthesis" (typically one-pot reactions between the MOF structural building blocks under solvothermal conditions) often give rise to side products that do not possess the desired structure. To circumvent this problem, we have studied in depth two powerful MOF synthetic techniques -- solvent-assisted linker exchange (SALE) and transmetalation. These are heterogeneous reactions of parent MOF crystals with concentrated solutions of organic linkers and inorganic metal salts, respectively, that lead to the replacement of the linkers or metal nodes within the parent MOFs by the desired components, while the overall framework topology is preserved. The projects described in this dissertation have aimed to apply these techniques to transform simple (unfunctionalized) and easy to synthesize representative materials from various MOF systems to structurally and functionally interesting daughter products. Examples include synthesis of MOFs that are energetically "unfavorable", extension of MOF cages by longer linker incorporation, functionalization of MOF pores and endowment of MOFs with permanent and persistent porosity. Through these projects, we have been able to formulate a set of rules that can be applied to predict the successful outcome of SALE.;Since the allure of MOFs lies in their applications, expanding the range of accessible MOF structures translates into potentially solving more relevant problems - especially those related to alternative energy and sustainability, which urgently need to be addressed given our current energy demands. We hope that SALE and transmetalation can provide alternative routes towards the synthesis of many new and exciting MOFs that can provide creative solutions to many of the problems that we face.
Keywords/Search Tags:MOF, Mofs, Synthesis
Related items