Font Size: a A A

The relationship between microstructure and damage evolution in hot-rolled complex-phase steel sheet

Posted on:2015-01-16Degree:M.A.ScType:Thesis
University:Queen's University (Canada)Candidate:Bell, Grant A.SFull Text:PDF
GTID:2471390020951045Subject:Engineering
Abstract/Summary:
Complex-phase (CP) steels are employed in applications that require high-strength and good edge formability. These steels derive their strength from a fine-grained bainite-ferrite microstructure, and alloying to provide solid-solution and precipitation strengthening. CP steels are produced industrially through a process of controlled rolling and cooling to produce desirable microstructures.;Hole-expansion tests are typically used as a measure of edge formability for applications such as stretch-flanges. It has been shown that CP microstructures are susceptible to large fluctuations in hole-expansion performance with little change in processing or resulting tensile properties. The steel's characteristics of damage evolution are critical to the hole-expansion performance.;This study investigates the role of microstructure in the development of damage in CP microstructural variants. Two variant pairs of different thicknesses were produced from the leading and trailing edge of industrially produced hot-rolled sheet. Each pair consisted of a variant with poor hole-expansion performance, and a variant with good hole-expansion performance. Each variant was tested via interrupted double-notched uniaxial tension testing to induce damage. Damage evolution in each variant was quantified by X-ray micro-computed tomography (XmicroCT), and supplementary optical micrography. The damage results were correlated with microstructural characteristics.;It was shown that poor hole-expansion variants failed by intergranular fracture. In these variants, void damage induced by hard martensite and retained austenite was not critical in producing failure. Purely void-damaged microstructures failed by ductile fracture, whereas cracked microstructures failed in a mixed brittle-ductile failure initiated by planar cracks. Microstructural banding of large elongated ferrite grains correlated with the existence of intergranular planar fractures.
Keywords/Search Tags:Damage, Microstructure, Hole-expansion performance
Related items