Font Size: a A A

Vapor liquid equilibria on the ternary lithium fluoride-sodium fluoride-beryllium fluoride system

Posted on:2007-02-06Degree:Ph.DType:Dissertation
University:University of California, BerkeleyCandidate:Fukuda, Grant TakeshiFull Text:PDF
GTID:1441390005460314Subject:Engineering
Abstract/Summary:
Molten mixtures of LiF, NaF, and BeF2 (FLiNaBe) have been proposed as a liquid first wall for selected fusion reactor designs. Because currently envisaged reactor technologies for igniting and/or sustaining a, fusion reaction require vacuum conditions, the volatility of these liquids is an issue for concern. Many physical properties of the ternary LiF-NaF-BeF 2 (FLiNaBe) system have already been studied as part of the molten salt reactor program, but the vapor pressure has not been measured.; A study of the vapor liquid equilibrium of FLiNaBe by Thermogravimetric Analysis (TGA) and Knudsen Cell Mass Spectrometry (KCMS) is presented. The ternary system is treated as a pseudo-binary system by fixing the ratio of LiF:NaF and varying the amount of BeF2. Measurements have been performed over a composition range of 0.3--0.8 mole fraction BeF2 and from 875--975K. Experimental data, are correlated in terms of the BeF 2 activity coefficient. Measurements were also carried out on the binary systems LiF-BeF2 and NaF-BeF2. Measured values of the BeF2 activity coefficient in the binary LiF-BeF2 and NaF-BeF2 systems compare satisfactorily with previous results published in the research literature. The vapor phase of FLiNaBe was found to consist of primarily the species BeF2, LiBeF3, and NaBeF 3 over the temperature and composition range studied.; Mixtures of BeF2-containing fluoride salts are highly non-ideal; the BeF2 activity coefficient exhibits both positive and negative deviations from ideality over the composition range studied. An associated solution model with 3 adjustable parameters is used to fit the BeF2 activity coefficient data of the LiF-BeF2 and NaF-BeF2 systems. The parameters obtained from fitting binary data are then used to fit the ternary system. The extension of the model to the ternary system results in a single additional parameter that can only be determined from fitting ternary data. Overall the agreement between the model and experimental data is within ∼30% and the model can be used to predict the vapor pressure over a wide composition range.
Keywords/Search Tags:Vapor, Liquid, Composition range, Ternary, System, Bef2, Data, Over
Related items