Font Size: a A A

Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

Posted on:2011-12-25Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Leone, Frank A., JrFull Text:PDF
GTID:1442390002966735Subject:Engineering
Abstract/Summary:PDF Full Text Request
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core.;Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed.;The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures.;Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications to the definitions of the local FE model boundary conditions is proposed and developed to address several issues related to the scalability of progressive damage modeling concepts, especially in regards to full-scale fuselage structures. Notable improvements were observed in the ability of the FE models to predict the strength of damaged composite fuselage structures. Excellent agreement has been established between the FE model predictions and the experimental results recorded by DIC, AE, FR, and visual observations.
Keywords/Search Tags:Composite, Damage, Model, Fuselage, DIC, Full-scale, Large
PDF Full Text Request
Related items