Font Size: a A A

Fiber reinforced hybrid phenolic foam

Posted on:2009-06-30Degree:Ph.DType:Dissertation
University:University of Southern CaliforniaCandidate:Desai, AmitFull Text:PDF
GTID:1442390005950782Subject:Engineering
Abstract/Summary:
Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior.;In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables.;Diffusivity, accelerated aging and flammability of hybrid foams were evaluated and the results indicate that hybrid foam surpassed several commercial foams and thus could fulfill the current needs for an insulation material which is low cost, has excellent fire properties and retains compressive stiffness even after aging.
Keywords/Search Tags:Hybrid, Fiber, Foam, Reinforced
Related items