Font Size: a A A

Densification of Selected Agricultural Crop Residues as Feedstock for the Biofuel Industry

Posted on:2012-02-19Degree:Ph.DType:Dissertation
University:The University of Saskatchewan (Canada)Candidate:Adapa, Phani KumarFull Text:PDF
GTID:1451390008997886Subject:Alternative Energy
Abstract/Summary:
An integrated approach to postharvest processing (chopping, grinding and steam explosion), and feasibility study on lab-scale and pilot scale densification of non-treated and steam exploded barley, canola, oat and wheat straw was successfully established to develop baseline data and correlations, that assisted in performing overall specific energy analysis. A new procedure was developed to rapidly characterize the lignocellulosic composition of agricultural biomass using the Fourier Transform Infrared (FTIR) spectroscopy. In addition, baseline knowledge was created to determine the physical and frictional properties of non-treated and steam exploded agricultural biomass grinds.;Particle size reduction of agricultural biomass was performed to increase the total surface area, pore size of the material and the number of contact points for inter-particle bonding in the compaction process. Predictive regression equations having higher R2 values were developed that could be used by biorefineries to perform economic feasibility of establishing a processing plant. Specific energy required by a hammer mill to grind non-treated and steam exploded barley, canola, oat and wheat straw showed a negative power correlation with hammer mill screen sizes.;Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. A novel procedure to quantitatively predict lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw was developed using Fourier Transformed Infrared (FTIR) spectroscopy.;Application of steam explosion pre-treatment on agricultural straw significantly altered the physical and frictional properties, which has direct significance on designing new and modifying existing bins, hoppers and feeders for handling and storage of straw for biofuel industry. As a result, regression equations were developed to enhance process efficiency by eliminating the need for experimental procedure while designing and manufacturing of new handling equipment.;Compaction of low bulk density agricultural biomass is a critical and desirable operation for sustainable and economic availability of feedstock for the biofuel industry. Correlations for pellet density and specific energy with applied pressure and hammer mill screen sizes having highest R 2 values were developed. Higher grind sizes and lower applied pressures resulted in higher relaxations (lower pellet densities) during storage of pellets.;Three compression models, namely: Jones model, Cooper-Eaton model, and Kawakita-Ludde model were considered to determine the pressure-volume and pressure-density relationship of non-treated and steam exploded straws. Kawakita-Ludde model provided the best fit to the experimental data having R2 values of 0.99 for non-treated straw and 1.00 for steam exploded biomass samples. The steam exploded straw had higher porosity than non-treated straw. In addition, the steam exploded straw was easier to compress since it had lower yield strength or failure stress values compared to non-treated straw.;Pilot scale pelleting experiments were performed on non-treated, steam exploded and customized (adding steam exploded straw grinds in increments of 25% to non-treated straw) barley, canola, oat and wheat straw grinds obtained from 6.4, 3.2, 1.6 and 0.8 mm hammer mill screen sizes at 10% moisture content (wb). The pilot scale pellet mill produced pellets from ground non-treated straw at hammer mill screen sizes of 0.8 and 1.6 mm and customized samples having 25% steam exploded straw at 0.8 mm. It was observed that the pellet bulk density and particle density are positively correlated. The density and durability of agricultural straw pellets significantly increased with a decrease in hammer mill screen size from 1.6 mm to 0.8 mm. (Abstract shortened by UMI.).
Keywords/Search Tags:Feedstock for the biofuel, Hammer mill screen, Steam, Agricultural, Biofuel industry, Straw, Pilot scale
Related items