Font Size: a A A

Effects of Phosphoric Acid Concentration on Platinum Catalyst and Phosphoric Acid Hydrogen Pump Performance

Posted on:2012-05-18Degree:Ph.DType:Dissertation
University:Rensselaer Polytechnic InstituteCandidate:Buelte, SteveFull Text:PDF
GTID:1451390011957490Subject:Alternative Energy
Abstract/Summary:
This work involves the study of the operational performance of phosphoric acid based electrochemical hydrogen pumps with a polybenzimidazole (PBI) electrolytic membrane. During characterization of these devices, the power consumption was found to be highly sensitive to the water vapor pressure in the supply gas stream which in turn affects the phosphoric acid concentration. The power requirement was 30 times higher when the supply gas stream was not humidified than when the supply gas stream was humidified.;Upon testing of electrochemical hydrogen pumps over a range of supply gas water vapor pressures from 150 to 0.8 mmHg, it was found that the effective platinum catalyst area decreases as phosphoric acid concentration increases in response to declining supply gas vapor pressure. It was hypothesized that the decline in the effective platinum catalyst area was caused by the adsorption of a species from the electrolyte that increases in concentration with phosphoric acid concentration. Polyphosphoric acid species were such a species which increased in concentration as phosphoric acid concentration increased and as a result were hypothesized to be the species adsorbing on the platinum catalyst.;Additional testing was conducted in an electrochemical half cell in which the effect of phosphoric acid concentration on the platinum surface area at a single electrode interface could be studied. Impedance spectroscopy and cyclic voltammetry (CV) testing was used to measure changes in exchange current and platinum surface area following the exposure of the electrode to electrolyte. Platinum surface coverage estimates from CV measurements were 60-87% at a phosphoric acid concentration of 76 wt% P2O5 (105 wt% H3PO 4) and near 100% coverage at 83.3 wt% P2O5 (115 wt% H3PO4). The exchange current for hydrogen oxidation and reduction on platinum decreased by a factor of 25 for 76 wt% P2O 5 and a factor of 1000 for 83.3 wt% P2O5 phosphoric acid concentration within 36 hours. A similar dependence of platinum surface coverage and exchange current on phosphoric acid concentration was observed during hydrogen pump testing over a range of supply gas vapor pressures.;This work indicates that platinum catalyst activity declines sharply above a phosphoric acid concentration of 72.4 wt% P2O5 (100 wt% H3PO4) which causes a significant increase in hydrogen pump power consumption. To reduce power consumption, the hydrogen gas supplied to the hydrogen pump requires humidification to a vapor pressure of at least 55 mmHg. The addition of humidification to the supply gas stream adds complexity to a system incorporating a phosphoric acid hydrogen pump. The need to add humidification equipment to reduce phosphoric acid hydrogen pump power consumption may have a significant impact when such devices are applied to hydrogen separation applications including hydrogen recovery from industrial exhaust streams and for emerging alternative energy applications.
Keywords/Search Tags:Phosphoric acid, Hydrogen, Platinum catalyst, Wt% P2O5, Supply gas, Power consumption
Related items