| The research program involved both numerical and experimental work. The numerical analysis was conducted to simulate the static and dynamic behaviour of the 81 m meteorological FRP guyed tower under wind and ice loading. The FRP tower consisted of 16 segments each made of 3 cells connected together to form an equilateral triangle having equal sides of 450 mm. The segments were interconnected using internal sleeves. Various non-linear finite element models were developed to study a number of design parameters for the 81 m FRP tower such as, different laminates containing a variety of stacking sequences of laminate orientations with various thicknesses, different cable diameters, and appropriate guy cable spacing levels. The effect of pre-stressing the guy cables up to 10 % of their breaking strength was investigated. The effect of fibre volume fraction on the design of the FRP tower was also examined. Furthermore, an 8.6 m FRP tower segment was designed using the finite element analysis and subject to the same loading conditions experienced by the bottom section of the 81 m FRP tower. A modal analysis was carried out for both the 8.6 m FRP tower segment with and without a mass on the top as well as for the 81 m FRP guyed tower to evaluate the vibration performance of these towers.;The experimental work involved extensive material testing to define the material properties for use in the analysis of the 81 m FRP tower. It also involved the design and fabrication of a special collapsible mandrel for fabricating the FRP cells for the 8.6 m tower segment. The 8.6 m tower was tested horizontally under static lateral loading to 80 % of its estimated failure load using a "whiffle tree" arrangement, in order to simulate a uniformly distributed wind loading. Later, the same FRP tower was erected in a vertical position and was tested with and without a mass on top under dynamic loading to obtain the natural frequencies. Lastly, a comparative study was conducted between two 81 m FRP towers having different fibre volume fractions and a steel tower having a circular cross section. |