Font Size: a A A

Feline chronic kidney disease: Novel approaches to etiology, specific therapy and supportive care

Posted on:2013-05-30Degree:Ph.DType:Dissertation
University:Colorado State UniversityCandidate:Quimby, Jessica MFull Text:PDF
GTID:1454390008488497Subject:Biology
Abstract/Summary:
The first part of this project investigated a possible etiology for feline chronic kidney disease (CKD); renal aging as manifested by telomere shortening and cellular senescence. In these studies telomere length and cellular senescence were assessed in cats with CKD in comparison to young healthy and geriatric healthy controls. Using a TELI-FISH assay to measure telomere length in specific renal cell populations, significantly shorter telomeres were found in the renal proximal and distal tubular cell population of CKD cats compared to young normal or geriatric normal cats. There was no difference between CKD cats and normal cats when liver or skin telomere length was measured. Additionally, beta-galactosidase assay revealed increased cellular senescence in the kidneys of CKD cats in comparison to young normal. CKD cats tended to have increased beta-galactosidase staining in comparison to normal geriatric cats, but this did not reach statistical significance. Neither telomere length nor cellular senescence were correlated with age, but the normal geriatric population available for assessment was small. It was concluded that telomere shortening and cellular senescence are present in feline CKD; future studies will be necessary to determine cause and effect aspects of this relationship. Demonstration of an association between telomere shortening, cellular senescence and feline CKD could be the foundation of new treatment strategies.;The aims of the second part of these studies were a) the assessment of the pharmacokinetics and pharmacodynamics of commonly prescribed doses of mirtazapine in normal cats, elderly cats and cats with CKD, and b) a placebo-controlled blinded crossover clinical trial to assess the efficacy of mirtazapine in CKD cats. These studies demonstrated that there are differences in the metabolism of mirtazapine between young normal cats, geriatric normal cats and CKD cats. Based on the pharmacokinetic studies, young cats could receive daily mirtazapine at a low dose without significant likelihood of drug accumulation whereas CKD cats should receive the drug every other day due to delayed clearance. In a subsequent clinical trial, mirtazapine significantly increased appetite, activity and weight in CKD cats when administered at a low dose every other day for three weeks. Additionally, a significant decrease in vomiting was noted. This demonstrated that mirtazapine does have significant appetite stimulating and anti-nausea effects in CKD cats. The information gathered in this body of work will help clinicians prescribe mirtazapine more effectively with a decreased incidence of unwanted drug side effects. Most importantly, it will help improve the quality of life and potentially prognosis of cats suffering from CKD.;Most treatments for CKD are palliative in nature and do not directly address the underlying pathology. CKD is characterized by tubulointerstitial inflammation, fibrosis and progressive loss of renal function. Mesenchymal stem cell (MSC) therapy is thought to be anti-inflammatory, and has the potential to improve or stabilize renal function in animals with renal failure, based on evidence from rodent model studies of induced renal disease. At present, there is little published work regarding the use of MSC for treatment of naturally occurring CKD. The last section of this body of work focuses on the evaluation of MSC therapy as a novel treatment strategy for cats with CKD. A series of pilot studies was performed; a pilot study of intrarenal injection of autologous stem cells and two pilot studies of intravenously injected allogeneic cryopreserved MSC. Urinary cytokines were measured to assess intra-renal inflammation, fibrosis and vascular health and the possible effects of MSC injection on these factors. We determined that MSC could be successfully harvested and cultured from bone marrow and adipose sources, but the latter was preferred for ease of collection, expansion and superior yield. Intrarenal injection did not induce immediate or longer-term adverse effects. Two CKD cats that received intrarenal adipose-derived MSC experienced modest improvement in GFR and a mild decrease in serum creatinine concentration. In the allogeneic cryopreserved intravenous study, six cats received 2 x 106 MSC per injection and experienced a significant decrease in serum creatinine with negligible side effects. Five cats received 4 x 106 MSC per injection and side effects included vomiting during infusion and increased respiratory rate. Variable decreases in serum creatinine, increases in GFR by iohexol clearance and changes in urinary cytokines were seen. Despite the mild improvement in creatinine seen in some of the cats, none had improvement to the extent described in rodent models. While MSC therapy potentially holds promise for palliation of CKD, additional work is necessary to determine if this therapy can be manipulated to increase its efficacy. (Abstract shortened by UMI.)...
Keywords/Search Tags:CKD, Feline, MSC, Disease, Renal, Cellular senescence, Telomere length, Studies
Related items