Font Size: a A A

Bridging the spatio-temporal semantic gap: A theoretical framework, evaluation and a prototype system

Posted on:2003-05-19Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Khatri, VijayFull Text:PDF
GTID:1460390011489733Subject:Education
Abstract/Summary:
The objective of this research is to formally define a spatio-temporal conceptual model that captures data semantics required for temporal and geospatial applications. We show how the proposed model provides a metaphor that bridges the semantic gap between the real world and its spatio-temporal representation in information systems. Our multi-methodological research approach includes: (i) formally defining a spatio-temporal semantic model called ST USM (Spatio-Temporal Unifying Semantic Model); (ii) evaluating the proposed model using a case study and a laboratory study; and (iii) demonstrating practicality of our proposed model using a proof-of-concept prototype system.; We describe a spatio-temporal conceptual modeling approach—applicable to any conventional conceptual model—that incorporates sequenced and nonsequenced space/time semantics. We have applied our annotation-based approach to the Unifying Semantic Model (USM)—a conventional conceptual model—to propose ST USM. ST USM is an upward-compatible, snapshot reducible, annotation-based spatio-temporal conceptual model that can comprehensively capture semantics related to space and time without adding any new spatio-temporal constructs. We provide formal semantics of ST USM via a mapping to conventional USM and constraints (expressed in first-order logic), from which the logical schema can be derived.; To evaluate the proposed model, we conducted a case study at the US Geological Survey that helped us assess the extent to which the proposed formalism helps capture all the spatio-temporal data semantics for an application. We show that ST USM is ontologically expressive and leads to schemas that completely capture the requisite spatio-temporal semantics. We conducted a laboratory study and found that an annotation-based approach to capturing the spatio-temporal semantics does not adversely impact the schema comprehension as compared with conventional conceptual models (e.g., USM). This implies that annotations provide an intuitive straightforward mechanism to capture the spatio-temporal requirements and can be usefully employed to capture spatio-temporal semantics accurately.; We describe DISTIL (DesIgn-support environment for SpaTIo-temporaL data), a web-based conceptual modeling prototype system that can help capture semantics of spatio-temporal data. Using DISTIL, we demonstrate that the annotation-based approach to capturing spatio-temporal requirements is straightforward to implement, satisfies ontology-based and cognition-based requirements, and integrates seamlessly into existing database design methodologies.
Keywords/Search Tags:Spatio-temporal, Semantic, ST USM, Model, Data, Conceptual, Capture, Prototype
Related items