Font Size: a A A

Surface chemistry studies of phosphate glasses

Posted on:2004-03-05Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Barnes, Amy SuzanneFull Text:PDF
GTID:1461390011471994Subject:Engineering
Abstract/Summary:
This research examined the surface of an undoped and rare-earth doped sodium alumino metaphosphate glass after fracture or surface finishing and subsequent exposure to humid and aqueous environments. In addition, the adsorption of aminopropyl triethoxysilane (APS), and the dominant parameters controlling the structure of the deposited film, were studied.; Typically, commercial glasses must be cut and polished into optical components for engineering applications. This process involves a series of aqueous treatments in both acidic and basic media. The experiments performed here on aluminophosphate glass showed that this results in dissolution, surface composition changes (depletion of Na) and surface pitting. In both alkaline detergent and acid etching solution, dissolution at a rate of approximately 4 × 10 −3 mol/m2/hr (0.2 μm/hr) occurs along with a drastic alteration of the surface morphology. When exposed to an environment of elevated humidity and temperature for an extended period of time, this aluminophosphate glass was observed to break down, forming a soluble phosphate gel that dissolves away from the surface. Simultaneously, the surface became enriched in silica, a trace contaminant in the glass, which eventually precipitated and coalesced into a dendritic pattern that covered the surface.; The freshly powdered phosphate glass was found to contain surface hydroxyls weakly associated with one another, and some bound by a stronger hydrogen bond, likely to adjacent non-bridging oxygens. Most of these hydroxyls could be desorbed upon heating above the glass transition temperature to leave only a small concentration of weakly associated hydroxyls and free hydroxyls on the surface.; The characterization of hydroxyls and water on the phosphate glass surface was used to understand the adsorption of aminopropyl tri-ethoxysilane (APS) also through the use of in-situ DRIFTS. The concentration of adsorbed APS was found to be independent of solution pH, but the measured water contact angle did not correlate with the APS coverage; this was attributed to a structure change of the APS molecule with variation of the solution pH during adsorption. (Abstract shortened by UMI.)...
Keywords/Search Tags:Surface, Glass, Phosphate, APS
Related items