Font Size: a A A

Fiber-optic dissolved oxygen and dissolved carbon dioxide sensors using fluorophores encapsulated in sol gel matrices

Posted on:2003-05-03Degree:Ph.DType:Dissertation
University:Rutgers The State University of New Jersey - New BrunswickCandidate:Kwon, Hyeog-ChanFull Text:PDF
GTID:1461390011480679Subject:Engineering
Abstract/Summary:
Fiber optic chemical sensors (FOCS) for oxygen, dissolved oxygen (DO), and dissolved CO2 sensing using thin films of fluorophores encapsulated in sol-gel matrices were made and tested. The DO/O2 sensor used ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) perchlorate (Ru(Ph 2Phen)Cl2) as the oxygen sensitive fluorophore and methyltrimethoxysilane (MTMS) sol-gel as the encapsulating matrix material. For the DCO2 sensor, 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) co-doped with sodium bicarbonate was used as the DCO2 sensitive fluorophore-chemical system and diisobutoxy-alumino triethoxysilane (ASE) sol-gel was used as the encapsulating matrix material.; It was found that oxygen quenches the excited state Ru(Ph2Phen)Cl 2 by diffusing through the MTMS matrix. Continuous excitation of Ru(Ph 2Phen)Cl2 during MTMS drying resulted in long, single exponential lifetimes of the metal complex and increased sensor sensitivity. When the sensor was field tested, it was found to have an excellent match compared to conventional titration method for determining dissolved oxygen concentrations and had fast response times. It was determined that this sensor measured the vapor pressure of oxygen rather than the absolute concentration of dissolved oxygen. For DCO2 sensing, it was found that the dynamic response of the senor could be tuned by varying the HPTS to NaHCO3 ratios. The sensor had fast response times compared to other fiber optic DCO 2 sensors reported which typically have response times of minutes.
Keywords/Search Tags:Sensor, Dissolved oxygen, Response times, Dco
Related items