Font Size: a A A

Effects of glass composition on the liquidus surfaces of high zirconia containing waste glasses

Posted on:2001-01-22Degree:Ph.DType:Dissertation
University:Clemson UniversityCandidate:Jiemsirilers, Sirithan BulpakdiFull Text:PDF
GTID:1461390014454518Subject:Engineering
Abstract/Summary:
Waste glasses must meet a variety of requirements for processing and product performance. Processing property constraints such as liquidus temperature (TL) and viscosity, and the product performance constraints such as durability have to be considered when formulating glass for waste immobilization. In this study, TL, glass transition temperature (Tg, and chemical durability of borosilicate waste glasses containing ZrO 2 concentrations from 6--12 mole% were determined. The concentrations of SiO2, ZrO2, Al2O3, B2 O3, Li2O, Na2O, and CaO were varied using a modified extreme vertices approach. Fifty-three statistically designed glasses were hatched and fabricated. Of the 53 glasses, 19 were not fully characterized due to the presence of undissolved solids (i.e., inhomogeneous glass) although extremely high melt temperatures were utilized (>1500°C). Liquidus temperature, glass transition temperature, and durability of the remaining glasses were examined.;Liquidus temperatures (TL) were measured using a series of isothermal heat treatments to narrow the TL to within +/-10°C. The primary crystalline phases were identified using optical microscopy and XRD. The three primary phase fields of Parakeldyshite (Na 2ZrSi2O7) Zircon (ZrSiO4), and Baddeleyite (ZrO2) were encountered for the glass composition region evaluated. Glasses with Parakeldyshite as a primary phase were found to have lower liquidus temperatures, than those glasses having, Zircon or Baddeleyite as the primary phase field.;Glass transition temperatures and crystallization temperature were determined using DTA. Glass transition temperatures of glass compositions containing higher percentages of alkali were often lower than those with lower percentages of alkali. This is primary due to a reduction in the connectivity of the glass network.;Chemical durability was determined using the Product Consistency Test. The most durable glasses were glasses with lower Na2O content and contained both Al2O3 and CaO.;This study showed that the effects of oxide components on glass properties were extremely important for selecting a glass formulation with maximum waste loading. The principles of glass structure such as bridging and nonbridging oxygens and polarizability concept were used to understand the effects. Empirical models were developed based on measured data which related liquidus temperature, glass transition temperature, and durability to glass composition. The experimental data was compared to the predicted data of the model. The purpose of these models were to assist in selecting glasses that offer a maximum ZrO2 waste loading for nuclear waste glasses.
Keywords/Search Tags:Glass, Waste, Liquidus, Temperature, Containing, Effects
Related items